
  

  

Abstract— Atypical sensory processing is now considered a 
ubiquitous feature of autism spectrum disorder (ASD) and is 
responsible for the atypical sensory-based behaviours seen in 
these individuals. Specifically, emotional arousal is a critical 
ASD target since it comprises emotion regulation and sensory 
processing, two core aspects of autism. So, in this project, we 
used task-based fMRI and a well-catalogued dataset of videos 
with variable arousal levels to characterize the sensory 
processing of emotional arousal content in ASD and typically 
developed controls. Our analysis revealed a difference in the 
secondary attention network where ASD individuals showed a 
clear yet lateralized preference to the dorsal attention network, 
whereas the neurotypical individuals preferred the ventral 
attention network. 

I. INTRODUCTION 

Autism spectrum disorder (ASD) is an early-onset and life-
long neurodevelopmental condition characterized by deficits 
in social communication and interaction and the presence of 
restricted and repetitive patterns of behaviour, interests and/or 
activities [1-2]. Effective reception, integration, and 
processing of sensory input enable a response to 
environmental signals adaptively, essential to everyday 
functioning and learning. However, ASD individuals 
demonstrate difficulties with sensory modulation resulting in 
atypical sensory-based behaviours. These behaviours are now 
considered a ubiquitous feature of ASD and are included as 
hyper and/or hyporesponsiveness in the most recent diagnostic 
criteria for ASD, reported in up to 75% of individuals [3-4]. 
This behavioural difference [5] correlates to abnormally low 
or elevated levels of autonomic and behavioural arousal [6-7]. 

Furthermore, atypical sensory modulation in ASD 
individuals is linked to elevated levels of stress and anxiety. 
These levels of stress and anxiety can be triggered by 
hyperresponsive responses to particular sensory stimuli that 
ultimately can result in self-injurious [8-9] or other 
problematic behaviours [10-11], difficulties in decision 
making [12], and considerable stress on family systems [13], 
especially in those unable to communicate their distress. 
Furthermore, a strong link has also been found between 
hyperresponsiveness and the development of specific phobias, 
 

This work was supported in part by the Santander/University of Coimbra 
seed project BioHab.  

All authors are with the Coimbra Institute for Biomedical Imaging and 
Translational Research (CIBIT), from the Institute of Nuclear Sciences 
applied to Health (ICNAS) of the University of Coimbra. D. A., A. R. C. and 

social dysfunction, and occupational performance [14–16]. 
Thus, hyperresponsiveness appears as a critical prior to 
anxiety symptoms that must be addressed to develop tools that 
can help modulate sensory responsivity. 

One measure of responsiveness is arousal, and one 
significant type of arousal in ASD individuals is emotional 
arousal since it comprises both responsiveness to stimuli and 
emotion regulation, two aspects frequently compromised in 
ASD [17]. In fact, some studies have linked under arousal to 
externalizing behavioural problems in ASD [18]. In this sense, 
applying neuroimaging approaches to the processing of stimuli 
of variable emotional arousal levels can reveal essential cues 
on how these processes are portrayed in ASD, as opposed to 
neurotypical individuals. 

This paper presents the preliminary results regarding the 
decoding of high and low emotional arousal states in the brain 
in both typically developing (TD) and ASD individuals using 
task-based fMRI and a well-catalogued stimuli dataset of 
stimuli with variable arousal levels [19]. 

II. METHODS 

A. Participants 
In this study participated 27 individuals, 14 with ASD and 

13 typically developed controls matched by age and empathy 
quotient. The relevant demographic information of the 
participants’ groups is summarized in the Table I. 
Table I – Demographic description of the ASD and TD groups, including age, 
Full-Scale Intelligence Quotient (FSIQ), Empathy Quotient (EQ), Autism 
Spectrum Quotient (AQ-10) and the Autism Diagnostic Observation Schedule 
(ADOS) score. Each score is presented in terms of group average and standard 
error, in brackets. Group differences were assessed with a two-sample T-test, 
with p-values on the last column. Groups are matched by age and EQ. 

 ASD TD P 
N 14 13 0.34 

AGE 21.58(1.36) 23.15(0.91) <0.01 
FSIQ 94.50 (2.97) 111.23 (4.30) <0.01 
EQ 38.45 (4.54) 45.62 (2.89) 0.18 

AQ-10 24.17 (1.49) 15.38 (1.54) <0.01 
ADOS 1.75(0.13) - - 
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B. fMRI experimental task 
The fMRI experimental task was divided into three runs. Each 
run was constituted by ten blocks, each containing three 
segments: fixation cross, video, and finally patient evaluation 
(Fig 1.). The fixation cross segment is composed of a small 
white cross in a black background that is displayed during at 
least 15 seconds and was used as a baseline. In the video 
segment either a high or low arousal video form the CAAV 
dataset [19] was displayed.  Each video has a duration of 15 
seconds and comprised an interaction between two actors, 
viewed from a first-person perspective (e.g., hugging a person, 
stealing money). The emotional arousal of each video of the 
dataset have been catalogued by 400 participants, and these 
values are available along with the videos. At the end of each 
video, an evaluation segment is presented where the 
participant was asked to self-evaluate the previous video in 
relation to its valence and emotional arousal, using the 9-point 
Self-Assessment Manikin (SAM) scale. 

 
Figure 1. Illustration of the design of each run block showing the different 
segments that are part of it. 

 

C.  fMRI acquisition protocol 
Imaging was performed on a 3T Siemens MAGNETOM 

Prisma Fit MRI scanner (Siemens, Erlangen) using a 64-
channel RF receive coil, at the Portuguese Brain Imaging 
Network (Coimbra, Portugal). fMRI data were acquired using 
a 2D simultaneous multi-slice (SMS) gradient-echo 
echoplanar imaging (GE-EPI) sequence (6× SMS and 2× in-
plane GRAPPA accelerations), with the following parameters: 
TR/TE = 1000/37 ms, voxel size = 2.0×2.0×2.0 mm3, 72 axial 
slices (whole-brain coverage), FOV = 200×200 mm2, FA = 
68°, and phase encoding in the anterior-posterior direction. A 
short EPI acquisition (10 volumes) with reversed phase 
encoding direction was also performed prior to each fMRI run, 
for image distortion correction. A 3D anatomical T1-weighted 
MP2RAGE (TR = 5000 ms, TE = 3.11 ms; 192 interleaved 
slices with isotropic voxel size of 1 mm) was also collected for 
subsequent image registration. 

D. fMRI pre-processing 
Before starting the pre-processing, data from all three runs 

were merged using FSL’s utility fsl_merge. The merged data 
were then pre-processed using FSL [20] according to the 
following pipeline. First, slice timing and motion correction 
were performed using FSL utility fsl_slicetimer and tool 
MCFLIRT [21] respectively. Subsequently, a B0-unwarping 
step was performed with FSL tool TOPUP [22], using the 
reversed-phase encoding acquisition, to reduce EPI 
distortions, followed by the correction for the bias field using 
FSL tools FAST [23]. Following these steps, non-brain tissue 
was removed using FSL tool BET [24] and nuisance 
fluctuations were then removed by linear regression using the 
following regressors [25]: 1) quasi-periodic BOLD 

fluctuations related to cardiac and respiratory cycles were 
modelled by a fourth order Fourier series using RETROICOR 
extracted using the PhysIO [26], 2) aperiodic BOLD 
fluctuations associated with changes in the heart rate as well 
as in the depth and rate of respiration were modelled by 
convolution with the respective impulse response functions 
also extracted using PhysIO [27], 3) the average BOLD 
fluctuations measured in white matter (WM) and cerebrospinal 
fluid (CSF) masks (obtained as described below), 4) the six 
motion parameters estimated by MCFLIRT, and 5) scan 
nulling regressors (motion scrubbing) associated with volumes 
acquired during periods of large head motion which were 
determined using the FSL utility fsl_motion_outliers. Finally, 
a high-pass temporal filtering with a cut-off period of 100 
seconds was applied, and spatial smoothing using a Gaussian 
kernel with full width at half-maximum (FWHM) of 3 mm was 
performed. 

E. Structural MRI pre-processing 
For each participant, WM and CSF masks were obtained 

from the respective T1-weighted structural image by 
segmentation into grey matter (GM), WM and CSF using FSL 
tool FAST [22]. The functional images were then co-registered 
with the respective T1-weighted structural images using FSL’s 
tool FLIRT, and subsequently with the Montreal Neurological 
Institute (MNI) [26] template, using FSL’s toll FNIRT [20]. 
Both WM and CSF masks were transformed into the 
functional space and were then eroded using a 3 mm spherical 
kernel to minimize partial volume effects [27]. 

F. Data analysis 
Following pre-processing, the fMRI data were analysed at 

two levels. First, each participant’s data were analysed 
individually and then group analysis was performed using the 
FSL tool Feat [29-30]. Feat analysis is based on general linear 
modelling (GLM). For the first-level analysis (individual 
analysis), three explanatory variables (EVs) were considered 
corresponding to the different segments in the task protocol: 
1) videos, obtained by combining all the video segments into 
a single regressor; 2) responses, corresponding to the response 
segments; and 3) fixation cross, corresponding to the fixation 
cross-segment. Each EV was modelled using a boxcar function 
and contained the information for when the event starts, its 
duration and its intensity. For the EV that corresponds to the 
combined video segments, the intensity of each event was 
modulated using the participants’ self-evaluated arousal level, 
normalised intra-participant-wise to the highest reported 
value. Each EV was then convoluted with the double-gamma 
HRF function, and the BOLD signal from each voxel of the 
data is fitted to them. The parametric modulation of the boxcar 
function for the videos EV will allow to look for voxels where 
the BOLD signal is modulated by the arousal levels reported 
by the participants on a trial-by-trial basis. The resulting 
estimated parameters of each voxel are then stored for each 
EV. These parameters can be used for statistical analysis by 
constructing contrasts, defined in FSL as a contrast of 
parameter estimate (COPE), revealing activations maps 
related to a specific EV or a combination of EVs. For the first-
level analysis, two COPEs were considered: 1) video, 
revealing brain regions solely involved with the first EV 
(videos); and 2) video vs fixation cross, revealing the brain 
regions that show greater activation when in the video’s 
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segments than in the fixation cross segments. Finally, in the 
second-level analysis, we evaluated the mean activation across 
each group for all the first-level COPEs and the group 
difference. 

III. RESULTS 
Behavioural analysis was performed to confirm the match 

between the values reported by the participants and the 
labelling from the database [19] regarding the arousal level of 
the videos shown. Using the Pearson correlation, the results 
showed that the group averages of emotional arousal values 
reported by the participants for each video type were highly 
correlated (r ≥ 0.9) with the catalogued arousal level from the 
database [19] in both groups (Fig 2). 

Regarding the fMRI data second-level analysis, we 
observe differences in activation patterns between the two 
groups (Fig 3). It is possible to identify that the ASD group 
shows greater activation of the dorsal attention network 
(DAN), with higher recruitment of the intraparietal sulcus 
(IPS). In contrast, the TD group shows greater activation of the 
ventral attention network (VAN), especially in regions from 
the temporoparietal junction (TPJ) complex. Furthermore, we 
observe a right-lateralization of the activation for the ASD 
group. This right-lateralization is well documented regarding 
emotional responses [31] and alterations to such lateralization 
have also been associated with sensory disorders and deficits 
[32]. 

 

 

 
Figure 2. Results from the behavioural analysis. It is possible to see that in 
both the Clinical a) and Control b) groups there is a high correlation between 
the answer given by the participant and the expected value from the database 
[19]. 

 
Figure 3. Maps of z-score activation for the voxels that show significant 
difference in activation between the two groups. In red, voxels where the 
activation is greater in the Control group, and in green voxels where the 
activation is greater in the Autism group. Slices from a) (x:44, y:-60, z:42), b) 
(x:51, y: -54, z:26) in the MNI space. 

 

IV. DISCUSSION 
The results from the fMRI analysis showed an interesting 

difference regarding how the events, in this case, videos of 
variable emotional arousal content, are processed in 
neurotypical brains and in ASD. The results show that ASD 
patients make preferential use of the DAN when processing 
those stimuli. The DAN is a secondary attention system that is 
active when attention is overtly or covertly oriented in space. 
DAN processing focuses upon egocentric space, that is, 
knowing the location of observed objects in relation to the self, 
to generate sensory-motor information about how to interact 
with the object being observed. Furthermore, DAN is involved 
in the selection of the appropriate response or action necessary 
for the attention orientation [33-35]. In contrast, the TD group 
shows a preference for the VAN. The VAN is also a secondary 
attention system that is linked to directing attention to salient 
sensory events. The VAN then redirects the attention network 
towards behaviourally relevant stimuli, especially when these 
stimuli are initially unattended. Furthermore, the focus of the 
VAN is focused primarily upon allocentric space, that is, 
knowing the relative location of objects in relation to other 
objects [33-34]. 

This difference in the activation of the different secondary 
attention systems reveals a fundamental difference in how the 
ASD participants process sensory information regarding the 
interaction of other persons, focusing more on the spatial 
identification of the scenery and how they can interact with it 
rather than analysing the interaction between the participants 
in the action and processing the sensory information observer 
from their interaction. 

Furthermore, the over recruitment of the right parietal area 
by the ASD group is consistent with our previous works on 
emotion perception and imagination [36]. 
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Our results corroborate the differences reported in the 
literature in terms of emotional arousal responses when 
compared to TD individuals, providing new insights regarding 
the attentional aspects of sensory processing of stimuli with 
emotional arousal content. The differences here identified 
highlight the need for tailored interventions for emotional 
regulation in autism. 
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