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Abstract— Asthma is an inflammatory disease of the airways
which causes cough, chest tightness, wheezing and other distinct
sounds during breathing. Spirometry is a golden standard lung
function test, is used to monitor and diagnose asthma. Spirom-
etry is very time-consuming and requires a lot of patient’s
efforts. Therefore, an alternate method which can overcome
spirometry limitations is required. Sound based method can be
one such alternative as it is less tedious, less time consuming and
suitable for patients of all ages. It has been shown in the past
that breath, among other vocal sounds, performs the best for an
asthma vs healthy subject classification task. Breath consists of
two phases, namely, inhale and exhale. Experiments in this work
show, exhale performs better for classification task compared
to the entire breath cycle as well as the inhale. However, this
requires manual marking of the breath boundaries, which is
a very time-consuming task. We, in this work, investigate how
critical are the breath cycle and breath phase boundaries for
the classification task. Experiments with chunks of random
duration shows that they perform on par or better than the
exhale. However, a segment comprising the second and third
quarters of a breath cycle results in the highest classification
accuracy of 80.64%. This suggests that, while breath phase
boundaries may not be important, breath cycle boundaries
could benefit in the classification task.

I. INTRODUCTION

Asthma is an obstructive lung disease that causes cough,
wheeze, chest tightness, and other peculiar symptoms [1].
Around 339 million people are suffering from asthma world-
wide, including 1000 deaths every day [2]. Spirometry is
a golden standard lung function test used to monitor and
diagnose asthma. During the test, a subject has to take
deep inhalation followed by forced exhalation for at least
6 seconds into a mouthpiece attached with the spirometer.
Throughout the test, the subject’s nose is closed with the
nose clip. Spirometer measures forced vital capacity (FVC),
forced expiratory volume in 1 sec (FEV1) and FEV1/FVC,
and other lung function parameters. Measured values of
these variables are compared with the reference values of
spirometry variables. Reference values are calculated based
on the age, height, weight, and gender of the subject-
discrepancies between reference and measured values of
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spirometry variables are used to diagnose and determine the
severity of asthma. However, spirometry is very tedious and
time-consuming, especially for older people and kids [3].
Another technique to monitor asthma is the peak flow meter
(PFM), which is simpler, easy, and less time-consuming than
spirometry. PFM measures peak expiratory flow rate from
major airways but fails to do so through minor airways,
which can also get affected during asthma [4]. Therefore, the
need of the time is an alternate method for asthma diagnosis
and monitoring. The sound-based method can be one such
method because it is less strenuous and time-consuming.

In the literature, wheeze sound has been used for the clas-
sification and monitoring of asthma. Wheeze is a whistling
sound produced during breathing due to obstruction of the
airways. Wheeze can occur during inhalation, exhalation,
or during entire breathing. Wisniewski et al. [5] have used
tonality index and spectral envelope of wheeze sound for
asthma monitoring. Few works have used duration of the
breath [6], dominant frequency range [7], pitch [8], wavelet
features [9] for asthma classification. One of our research
interests is sound-based monitoring and diagnosis of asthma.
To address this problem, we have, previously, reported few
related results [10], [11] and [4]. Rao et al. [4] have predicted
spirometry variables using statistical spectrum descriptors to
determine asthma severity using cough and wheeze. Yadav
et al. [10], [11] performed asthma and healthy subject
classification using wheeze, cough, and sustained phonations.
Experiments [10] have shown that the wheeze (referred to as
breath in this paper) is the best sound for the classification
between asthmatic and healthy subjects. However, the role
of inhale and exhale (referred to as breath phases) has not
been separately analyzed for the classification task in [10]. In
all our earlier works [10], [11], [4], breath boundaries have
been marked manually by listening and visual inspection of
spectrogram of breath sound, which is a very time-consuming
task. Therefore, the motivation of our current work is to
address two key questions: 1. Do breath phases contribute
equally towards the classification between asthmatic and
healthy subjects? 2. In a recording of continuous breath
cycles are exact locations of breath boundaries required
for the classification task? In this work, we answer these
questions using a classification experiment setup identical
to that in [10]. Experiments with 48 healthy subjects and 45
asthmatic patients reveal that exhale is better than both inhale
and complete breath cycle, with an average classification
accuracy of 75.15%(± 9.29%). Experiments with random
chunks reveal that five chunks of duration 2.2 secs picked
randomly from a recording of the continuous breath cycles
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Fig. 1. Histogram of manually annotated inhale, exhale and entire breath cycle. X-axis indicates duration in secs and Y-axis denotes the total count.

are good enough for achieving a classification performance
comparable to that using exhale. This suggests that exact
breath phase boundaries are not critical for the classification
task. However, a segment comprising the second and third
quarters of a breath cycle results in the highest classification
accuracy of 80.64%, indicating that the breath cycle bound-
aries, unlike breath phase boundaries, could benefit in the
classification task.

II. DATASET

A total of 93 subjects is used in this work, out of which
45 (26 male, 19 female) are asthmatic patients, and 48 (24
female, 24 male) are healthy controls. All data have been
recorded in the St. Johns medical college hospital, Bangalore,
India under the guidance of the doctor. The maximum and
minimum age of the patients is 71 years and 15 years,
respectively, with an average age of 43.42(± 13.86) years.
Similarly, the average age of controls is 36.18(± 11.22)
years, with minimum and maximum age being 19 years and
60 years, respectively. From each subject, breath signals are
recorded in a typical noisy environment of the hospital. Each
subject signs a consent form before the recording. The breath
signal is recorded with a ZOOM H6 handy recorder at a
sampling rate of 44.1kHz. Subjects are instructed to take
deep breaths while sitting. During the recording, microphone
is kept at around 5 cm in front of the mouth. Throughout the
recording, a nose clip is used to close the nose of a subject so
they can breathe up to their total capacity through the mouth
only. On average, nine breath cycles per subject are recorded.
Total 863 breath cycles are recorded, out of which 450 are
from healthy subjects and 413 are from patients. Histograms
of inhale, exhale and breath duration are given in Fig. 1.
For inhale, the average duration is 1.45(± 0.68) secs with a
maximum and minimum duration of 5.20 secs to 0.49 secs
as shown in Fig. 1. Average duration of exhale is 1.86(±
1.06) secs with a range of duration being 0.55 secs to 8.513
secs. The average breath cycle duration is 3.37(± 1.54) secs
with a duration range of 1.28 secs to 11.28 secs as shown
in Fig. 1. Breath phase boundaries are manually marked
through visual inspection of the spectrogram and listening
of the breath sound signal waveform through Audacity [12].

III. METHODOLOGY

To the best of our knowledge, no other works in the
literature, except by Yadav et al. [10], reported classification
of asthmatic and healthy subjects using vocal breath sounds.
Hence, in this work, we have used the features, classifier, and
evaluation measure used in [10]. During our previous work
reported in [11], [4], [10], it has been observed that manual
marking of breath phase boundaries is a tedious task. An
alternate approach could be the development of automatic
breath phase boundary segmentation methods. However, we
need to examine how critical is the requirement of exact
breath phase and breath boundaries for the classification task
at hand. That, in turn, would determine the required accu-
racy for a breath segmentation approach. For this purpose,
we investigate the significance of breath and breath phase
boundaries for the classification between asthmatic patients
and healthy subjects. For comparing the entire breath cycle
and breath phases, support vector machine (SVM) classifiers
are trained for each of them, and classification performance
is reported. We, in this work, assume that the breath sounds
(referred to as B[n], where n denotes sample index) are
continuously recorded without any pause or silence. From
B[n], nr many chunks of duration, dr are selected randomly.
For each chunk of duration dr, a feature vector comprising
features given in [10] is computed. Therefore for every B[n],
nr feature vectors are computed. A support vector machine
is used for the classification task.

TABLE I
MEAN(STANDARD DEVIATION)(%) OF CLASSIFICATION ACCURACY,

RECALL AND SPECIFICITY USING INHALE, EXHALE AND BREATH USING

MANUALLY ANNOTATED BOUNDARIES.

Inhale Exhale Breath
Mean(SD) 60.18(5.02) 75.15(9.29) 71.93(6.45)

Mean Recall(SD) 60.2(14.0) 70.4(17.4) 68.4(13.3)
Mean Specificity(SD) 60.0(6.0) 80.0(4.9) 75.5(9.3)

IV. EXPERIMENTAL SETUP

12 MFCC coefficients have been calculated by using a
window length of 20 msec with 10 msec shift. Six statistics
of MFCC, namely, mean, median, mode, variance, standard
deviation, and root mean square error, are calculated. Feature
extraction is done using Voicebox toolkit [13] and SVM
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TABLE II
MEAN(SD)(%) OF CLASSIFICATION ACCURACY USING SEGMENTS OF A

BREATH CYCLE, NAMELY B0−25 , B25−75 AND B75−100 .

B0−25 B25−75 B75−100

Mean(SD) 62.34(10.67) 80.64(8.82) 76.37(8.69)

is used from LIBSVM-3.21 toolkit [14]. Feature extraction,
SVM training, and testing are done in MATLAB. Another
experiment is done to understand which region of breath
provides more information for the classification task apart
from inhale and exhale. For this task, each breath cycle is
divided into 3 parts, which are referred as B0−25, B25−75

and B75−100. B0−25 indicate initial 25% of the breath cycle,
B25−75 denote next 25% to 75% of the breath cycle dura-
tion and B75−100 denotes last 25% duration of the breath.
Classification task is performed separately for each B0−25,
B25−75 and B75−100 and performance is compared. dr varies
from 1 sec to 5 sec with a step size of 0.4 sec, including
average breath, inhale and exhale duration as shown in Fig.
1. This range is selected based on the mean and standard
deviation of breath cycle, inhale and exhale duration as
shown in 1. dr also set to frame duration corresponding to
the minimum and maximum breathing rate, which are 15
breaths per minute and 20 breaths per minute [15] that is 4
secs and 3 secs, respectively. nr varies from 5 to 30 with
a step size of 5. nr = 1 is also used in this work. Five-
fold setup have been used. Each fold contains 9 patients.
Each of two among five folds contains 9 controls, and each
of the remaining three folds has 10 controls. SVM hyper-
parameters are tuned using a grid search using a five-fold
cross-validation within the training set using radial basis
function. Grid search is performed for log2C and log2γ in the
range of -6 to 8 and -1 to 20, respectively, with the step size
of 1. Mean classification accuracy, precision, and recall are
used as the evaluation metrics [16]. As nr number of chunks
are picked randomly, classification is highly dependent on
the locations of these chunks in the continuous recordings
of the breath cycles. Certain choices of the locations may
results in high classification accuracy while other choices
may not. Therefore for every combination of nr and dr, an
experiment is repeated eight times to obtain a mean accuracy.
By eight-time repetition, each fold will have eight accuracy
values, whose average is computed. The mean and standard
deviation of mean accuracy across eight repetitions is shown
in Table III.

V. RESULTS

Results are presented in 3 sub-sections. The first sub-
section describes the classification performance using inhale,
exhale, and entire breath cycle. In the second sub-section,
the classification experiment is done using B0−25, B25−75,
and B75−100. Last sub-section describes the classification
performance by different combinations of nr and dr. The
last two sub-sections help in understanding the role of breath
boundary for the classification task.

A. Comparison of breath and breath phase for classification

Mean classification accuracy, mean recall and mean speci-
ficity using inhale, exhale, and entire breath cycle are given in
Table I. From the first row of Table I, it can be observed that
exhale performs the best in terms of the mean classification
accuracy, which is (75.15%) followed by the entire breath
cycle, which results in a mean classification accuracy of
71.93%. However, the SD (6.45%) using the whole breath
cycle is lower than that (9.29%) using the exhale. Inhale
performs the worst among all. It can be observed that
specificity is maximum in exhale, 80%(± 4.9%), whereas,
using the entire breath signal, it is 75.5%(± 9.3%). Similarly,
mean recall using exhale and entire breath cycle are 70.4%(±
17.4%) and 68.4%(± 13.3%), respectively. Interestingly, the
mean recall is lower in inhale, exhale, and entire breath than
specificity. It shows proposed features are better in predicting
asthmatic patients compared to healthy controls.

B. Significance of B0−25, B25−75 and B75−100 in a breath

From the Table II, we observed that B25−75 performs
the best among all three with a mean(SD) of 80.64%(±
8.82%), whereas B0−25 is performed worst among all with
a mean(SD) of 62.34%(± 10.67%). Interestingly, as inhale
duration is generally shorter than that of the exhale, major
part of B25−75 would be contributed by exhale compared
to inhale. Nevertheless, even performance of B25−75 is
better than exhale, which is 75.15%(± 9.29%) (as given in
Table I), which indicates a transition from inhale to exhale
provides most of the cues for the classification task. It is
also interesting to observe that not all parts of the exhale
contribute equally to the classification task. B0−25 performs
the worst among three parts considered. Interestingly, B0−25

is contributed mostly by the inhale phase of the breathing
cycle. From this experiment, it can be concluded that 2nd

to 3rd quarter of the entire breath cycle carries most of the
information for the classification.

C. Role of random dr and nr on the classification accuracy

This experiment compares the classification performance
obtained from breath cycle segments obtained using manu-
ally annotated boundaries, e.g. , inhale, exhale, and complete
breath cycle vs. randomly chosen chunks from the breath
recording. Results of this experiment are shown in Table III.
From Table III, it can be seen that for every nr ( except for
nr = 1 ) and dr, performance is always greater than 71.54%,
identical to the accuracy obtained using manually annotated
breath sound which is 71.93%. For nr = 1, underfitting is
observed. Underfitting occurs due to a very less number of
representative data points from both asthmatic and healthy
subject class. In this case, all subjects are classified as
patients which leads to as mean classification accuracy of
48%. The best performance of 77.21(± 7.56)% is observed
with dr = 2.2 secs and nr = 5. We observed that for a nr
between 5 to 25, high accuracy is obtained for dr, 220 to
300 frames (highlighted as the blue region in the Table III),
which is greater than the average exhale duration but less
than the average breath duration (shown in colour in Table
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TABLE III
MEAN(SD)(%) OF CLASSIFICATION ACCURACY BETWEEN ASTHMATIC AND HEALTHY SUBJECTS USING VARIOUS dr AND nr . IN TABLE dr

CORRESPONDING TO THE AVERAGE DURATION OF INHALE, EXHALE AND BREATH CYCLE IS SHOWN IN COLOUR WHICH IS 145, 186 AND 337
FRAMES, RESPECTIVELY. dr ESTIMATED FROM THE MAXIMUM AND MINIMUM BREATHING RATE IS SHOWN IN COLOUR WHICH IS 300 AND 400

FRAMES, RESPECTIVELY.

Breath duration, dr (frames)Number of chunks
nr 100 140 145 180 186 220 260 300 337 340 380 400 420 460 500

1 48.29
1.58

48.42
1.44

48.42
1.44

48.42
1.44

48.42
1.44

48.42
1.44

48.42
1.44

48.42
1.44

48.42
1.44

48.42
1.44

48.42
1.44

48.42
1.44

48.42
1.44

48.42
1.44

48.42
1.44

5 71.54
8.35

74.71
7.36

72.67
6.86

73.95
7.2

72.8
6.75

77.21
7.56

73.08
5.91

75.6
4.41

75.71
7

74.99
4.74

72.41
6.1

73.16
7.94

74.04
3.9

73.61
6.85

72.65
4.1

10 73.27
8.21

74.7
8.24

73.49
8.56

74.01
8.03

75.07
7.94

74.76
10.03

76.38
9.7

73.31
7.74

74.81
8.42

75.11
3.94

74.81
5.25

74.4
5.29

74.82
5.87

75.77
5.58

75.2
6.13

15 73.25
7.23

74.59
6.61

75.45
8.61

73.07
7.74

74.31
7.55

75.88
7.63

75.47
8.38

76.16
5.62

75.36
5.13

75.49
4.49

73.06
5.73

73.31
5.61

75.07
3.44

74.29
4.26

74.72
4.31

20 74.57
8.3

75.48
7.47

73.22
9.58

75.04
9.75

74.5
7.6

76.39
7.75

76.02
8.56

75.64
6.54

76.28
4.35

74.81
5.35

74.82
5.72

76.04
5.31

74.7
5.24

76.01
6.03

74.42
4.02

25 74.29
6.83

74.02
8.93

75.61
7.16

73.06
7.53

74.39
8.11

73.46
8.49

72.89
8.89

76.54
7.69

74.96
6.29

73.71
5.25

73.6
4.82

74.13
5.47

75.1
5.39

74.85
2.69

74.7
3.99

30 73.79
7.12

72.39
8.1

74.23
8.1

72.35
10.25

73.39
6.95

74.12
8.52

74.25
10.09

75.31
9.04

74.14
4.87

74.79
7.06

74.8
5.89

75.07
4.9

74.57
4.55

75.21
6.21

76.7
2.76

III). Best performance is observed the maximum number of
times for nr = 20 ( 6 out of 15 ) with varying dr. From this
experiment, it has been concluded that the exact locations of
breath cycles are required, but the exact location of breath
phases is not critical for the classification task.

VI. CONCLUSIONS

In this work, we carry out asthmatic vs health subject
classification experiments using parts of breath cycles chosen
in three different manners: 1) breath phases, i.e., inhale
and exhale, which requires manually marked breath phase
boundaries, 2) chunks of random duration chosen at ran-
dom locations from recordings of continuous breath sounds,
which does not require any boundary marking 3) first 25%,
middle 50% and last 25% of a breath cycle, which requires
manual marking of breath cycle boundaries. Interestingly, the
classification accuracy with breath cycle parts chosen in the
second manner does not perform worse than that using those
chosen in the first manner. However, the highest classification
performance is achieved when the parts of a breath cycle are
chosen in the third manner, in particular the middle 50%
of a breath cycle is found to be the most informative for
discrimination between asthmatic and healthy subjects. These
experiments indicate that, while breath phase boundaries may
not be critical, having breath cycle boundaries would benefit
the classification task. As parts of our future works, we plan
to develop robust automatic breath segmentation algorithms
and investigate how errors in automatic segmentation could
impact the classification accuracy.
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