
  

  

Abstract—The overall muscle activation of post-stroke 
patients during standing has not been well understood. 
Functional muscle network provides a tool to quantify the 
functional synchronization across a large number of muscles. In 
order to investigating the functional muscle network of stroke 
survivors during quiet standing, we recruited 8 post-stroke 
hemiplegic patients and required them to stand still for 30 s with 
eyes open and closed. Surface electromyography signals were 
recorded from 16 muscles in abdomen, buttocks and lower limbs. 
The functional muscle networks of paretic side and healthy side 
were built by multiplex recurrence network approach. The 
topological characteristics of functional muscle network was 
quantified by parameters of multiplex network and weighted 
network. The results showed that the dynamical similarities of 
muscles on paretic side were reduced, and the dynamical 
connections of muscles on paretic side were weakened. Without 
visual feedback, the muscles activated in a more similar mode. 
The stroke led to lower synchronization of the muscle activation, 
and decreased efficiency of information transmission between 
muscles. When subjects stood with eyes closed, the muscles 
activated in a more deterministic pattern. The research opens 
new horizons to detect the overall muscle activation when stroke 
patients stand quietly, and can provide a theoretical basis for 
understanding the motor dysfunction caused by stroke. 

I. INTRODUCTION 

As an acute cerebrovascular disease with high prevalence, 
stroke often leads to motor dysfunction [1]. One of the most 
common motor deficits in post-stroke patients is impaired 
standing balance, which is specifically manifested as weight-
bearing asymmetry on lower limbs and increased body sway 
[2]. The abnormal muscle activation in hemiparetic stroke 
survivors is the direct cause of motor dysfunction. Not only the 
dystonia, but also the abnormal muscle synergy patterns would 
appear after stroke [3]. 

The muscle synergies reflect the efforts of central nervous 
system (CNS) to reduce the redundancy of musculoskeletal 
system. Abnormal muscle synergies often correlate with the 
motor impairment of patients. However, muscle synergies 
cannot effectively quantify the functional synchronization 
among multi-muscles. The functional muscle network, which 
is originated from graph theory, provides us with a tool to 
quantify the functional synchronization across a large number 
of muscles [4]. It is valuable to research whether and how the 
muscle network alters in post-stroke patients, especially during 
quiet standing. 
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The recurrence network (RN), which constructs a network 
according to the recurrence structure of the time series, could 
detect subtle dynamical transitions of complex system, and has 
be applied in many fields such as neuroscience, bioinformatics 
and meteorology [5, 6]. On the basis of RN, Deniz Eroglu et 
al proposed multiplex recurrence network approach, offering 
possibilities to assess dynamical synchronization across multi-
muscles [7]. 

This study intends to apply multiplex recurrence network 
approach to quantify the topologies of muscle networks on 
healthy and paretic sides in post-stroke patients. It was 
hypothesized that functional connectivity between muscles of 
two sides in stroke survivors would be significantly different. 

II. METHODS 

A. Participants 
Eight post-stroke hemiplegic patients were recruited in this 

experiment. All patients had been clinically diagnosed with 
first-ever stroke and had the ability to stand independently. 
The individuals who had a history of lower extremity injuries, 
severe lumbar diseases, dizziness or vestibular system diseases, 
cognitive disorder and serious vision defects, were excluded 
from the experiment. The Ethical Committee of Nanjing 
Medical University approved this experiment according to the 
Declaration of Helsinki. Subjects participated with signed 
informed consent. The characteristics of subjects were 
exhibited in Table 1. 

Table 1. The characteristics of subjects. 

Number Sex Age 
(y) 

Height 
(cm) 

Weight 
(kg) 

Time  
post-stroke 

(month) 
Paretic 

side 

1 Male 56 163 75 10 Right 
2 Male 45 170 70 4 Right 
3 Male 58 175 74 7 Right 
4 Male 45 168 86 10 Right 
5 Male 39 168 82 4 Right 
6 Male 16 174 55 5 Left 
7 Male 41 173 80 7 Right 
8 Male 52 170 70 5 Right 

Mean  44.0 170.1 74.0 6.5  
SD  13.2 3.9 9.5 2.4  

B. Experimental Design 
Sixteen wireless surface electromyography (sEMG) 

electrodes (Delsys Inc., Natick, MA, USA) were applied to 
collect the muscle signals of obliquus externus abdominis 
(OE), longissimus (LO), gluteus maximu (GMA), gluteus 
medius (GME), rectus femoris (RF), biceps femoris (BF), 
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tibialis anterior (TA) and gastrocnemius caput mediale (GM) 
on paretic and healthy sides. The sampling frequency of sEMG 
system was set to 1926 Hz. 

Subjects were required to stand upon the center of force 
plate. For the trial with visual-feedback, subjects maintained 
their body upright and stared at a "marker" on the wall 1.5 m 
ahead for 30 s. For the trial without visual-feedback, subjects 
put on the blindfold and maintained the upright posture for 30 
s. Three trials were performed for each visual condition. The 
eyes open (EO) test and eyes closed (EC) test were performed 
alternately. Subjects had 1-min sit break between two trials. 

C. Data Analysis and Statistical Analysis 
The MATLAB R2020a (The Mathworks, Natick, MA, 

USA) was applied to process the pre-processing and analysis 
of recorded sEMG signals. For data pre-processing, the sEMG 
signals were band-pass fileted (20 to 500 Hz). Only signals of 
middle 20 s were left in each trial for future analysis. 

For data analysis, each sEMG time series was 
reconstructed as a trajectory in high-dimensional phase space 
according to Taken's time delay theory. According to the 
mutual information and false nearest neighbors, the time delay 
was set to 5 samples and the embedding dimension was set to 
4 for phase-space reconstruction. By comparing the distance 
between any two points of the new constructed trajectory with 
the 80% of the maxim phase space radius, a binary adjacency 
matrix for a sEMG time series could be obtained. Considering 
the adjacency matrix as a RN, the links between the nodes of 
RN can be represented by the values of adjacency matrix (1 
represents there is a connection, and 0 represents there is no 
connection). 

The RN can only reflect subtle dynamical transitions of 
single muscle activation. If we want to explore the functional 
connection of multi-channel sEMG signals, we need to build 
multiplex network (MN) and weighted network (WN) based 
on RN. Supposing there are m time series, they can construct 
m RNs. The m-layer MN can be created by m RNs, where a 
single RN forms one layer of m-layers in MN. The layers are 
connected each other with corresponding time points. The 
structural characteristics of MN can be quantitatively 
described by average interlayer mutual information ( I ) and 
average edge overlap ( ω ). The interlayer mutual information 
between layer α  and β  is derived as: 
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where ,x yδ  is the Kronecker delta symbol (if x y= , , =1x yδ ; 

others, , =0x yδ ). The higher ω  is, the more similar the 
dynamical structure of signals is. 

Taking each layer in the MN as a node, the interlayer 
mutual information of two layers as the weight edge of two 
nodes, a m-node WN can be constructed. The structural 
characteristics of WN can be quantitatively described by 
related parameters, including clustering coefficient ( C ) and 
average shortest path length ( L ). The C  is given by: 
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where kκ  is the degree of node κ . The L  is calculated as 
follows: 
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where V  is the set of all nodes of WN, ( ),d α β  is the 
shortest path length between nodes α  and β . The C  and 
L  determine the small-world characteristics of WN. If the 

overall muscle activation is tighter, the functional muscle 
network will show larger C  and smaller L . 

A window with 1000 sample points and an overlap of 250 
sample points was applied on the multi-channel signals to 
quantify the characteristics of MN and WN. The mean values 
of all the windows were calculated for each subject. 

The SPSS 26.0 (SPSS Inc., Chicago, USA) was applied 
to perform statistical analyses. A two-way repeated measures 
ANOVA was applied to examine the differences of the 
functional muscle network parameters with the side (paretic vs. 
healthy) and the vision (EO vs. EC). A p-value less than 0.05 
was considered statistically significant. 

III. RESULTS 

A. MN 
The statistical results of MN parameters are depicted in Fig. 

1. The structure of MN was significantly different between 
healthy and paretic sides. The values of I  and ω  on paretic 
side were significantly lower than those of healthy side (Fig. 1, 
p < 0.05). The absence of visual information had a significant 
impact on functional muscle network. When subjects stood 
without visual feedback, the parameters of MN had 
significantly increase (Fig. 1, p < 0.05). 

B. WN  
The Fig. 2(a) shows the topological connection of WN. 

Compared with the connection of muscles on paretic side, the 
links between nodes of muscle network on healthy side were 
more weighted. Results were exhibited more obviously in Fig. 
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2(b). For the WN on paretic side, there were very few edges 
whose weight was greater than 0.45. 

The statistical results of WN are displayed in Fig. 3. Effects 
of side were only observed in L , rather than C . The L  on 
healthy side were significantly lower than corresponding 
values on paretic side (Fig. 3(b), p < 0.05). The topological 

connection of WN was significantly changed when visual 
feedback was removed. While C  was significantly increased 
(Fig. 3(a), p < 0.05), the L  was significantly decreased of 
both sides in stroke patients under the condition of EC (Fig. 
3(b), p < 0.05).

 
Figure 1. Statistical results of MN parameters. 

 
Figure 2. The topological connection of the WN. The line width represents the weight between two nodes. The wider the line 

is, the higher the weight is. 

 
Figure 3. Statistical results of WN parameters. 
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IV. DISCUSSIONS 
This study investigated the effects of stroke on functional 

muscle network on paretic and healthy sides during quiet 
standing by MN and WN. The topological characteristics of 
MN were quantified by I  and ω , while the topological 
characteristics of WN were quantified by C  and L . 

Stroke significantly reduced the dynamical similarity of 
muscle activation. Compared with the healthy side, the paretic 
side showed decreased I  and ω  of MN in stroke survivors. 
The smaller the parameters of MN are, the less similar the 
recurrent states of muscle activation are. Due to the damage 
to the CNS generated by stroke, there are synchronization lag 
in neural activity between brain regions [8]. Not only the 
abilities to integrate sensory information, but also the abilities 
of CNS to issue suitable motor commands are impaired. The 
patients with stroke would act with loss or reduction of motor 
unit synchronization [9]. This may be the reason why the 
parameters of MN were significantly lower on paretic side. 
The existence of synchronization lag changed the recurrent 
states of muscle activation, resulting in lower similarity in 
dynamical connection of muscles on paretic side. 

When looking at the WN, the higher strength edges were 
more likely to exist on healthy side. There were very few 
edges with a weight greater than 0.45 on paretic side (Fig. 
2(b)). It is evident that the dynamical connections of muscles 
on paretic side were weakened. The statistical results of WN 
also confirmed this. The WN of paretic side had longer path 
length, meaning that the functional connection of overall 
muscle activation was looser. This may be due to the lower-
level synchronization of the overall muscle activation on 
paretic side. Besides, the shortest path makes an important 
contribution to fast information transfer within a network. 
Longer path length would result in lower information 
transmission efficiency [10]. The problem of information 
transmission may be one of the causes of motor dysfunction 
in stroke patients. 

Visual feedback had significant effects on functional 
muscle network in stroke patients. When subjects stood 
without visual feedback, the dynamical structures of muscle 
activation were more similar and the functional connections 
were tighter. This may be because subtle dynamical 
transitions of muscle activation were more recurrent. When 
patients stood with EO, the visual feedback information 
would assist the CNS in real-time motor control. Cutting off 
the pathway of visual feedback, the CNS decreased the 
capacity of online motor adjustment and would rely on a 
larger proportion of feedforward control strategy to maintain 
balance [11]. The muscles would activate in a more 
deterministic pattern, resulting in more recurrent states of 
dynamical structure [11]. 

V. CONCLUSION 
This study confirmed the effects of stroke on functional 

muscle connections by MN and WN. The stroke led to lower 
synchronization of the muscle activation, and decreased 
efficiency of information transmission between muscles. 
Muscles would activate in a more deterministic pattern 
without visual feedback. The research opens new horizons to 

detect the overall muscle activation when stroke patients 
stand quietly, and can provide a theoretical basis for 
understanding the motor dysfunction caused by stroke. 
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