
  

  

Abstract— One of the most promising and at the same time 

rapidly growing sectors in healthcare is that of wearable 

medical devices. Population ageing constantly shifts towards a 

higher number of senior and elderly people with increased 

prevalence of chronic diseases often requiring long-term care 

and a need to decrease hospitalization time and cost. However, 

today most of the devices entering the market are not 

standardized nor medically approved, and they are highly 

inaccurate. In this work we present a system and a method to 

provide accurate measurement of systolic and diastolic blood 

pressure (BP) based solely on wrist photoplethysmography. We 

map morphological features to BP values using machine 

learning and propose ways to select high quality signals leading 

to an accuracy improvement of up to 33.5%, if compared 

against no signal selection, a mean absolute error of 1.1mmHg 

in a personalized scenario and 8.7mmHg in an uncalibrated 

leave-one-out scenario. 

I. INTRODUCTION 

Photoplethysmography (PPG), as a method for non-
invasive and low-cost sensing of vital signs, plays a 
significant role in wearable medical devices, meant to be 
used for continuous health monitoring systems. It is a well-
established technique, already in use by a variety of wearable 
devices (e.g., smart bands, smart rings, smartphones) for the 
acquisition of different vital signs such as heart rate and pulse 
rate variability. Of great importance is the blood pressure 
(BP) estimation both for diagnosed patients at risk from 
cardiovascular diseases (CVDs) but also for healthy 
individuals as an early indicator of hypertension. In Europe 
CVDs are accused for almost four million deaths each year 
being the leading cause of mortality under 65 years [1]. 

Even if modern wearable devices offer the possibility of 
estimating BP, still the “golden standard” lies in traditionally 
used cuff-based approaches, mainly due to highly inaccurate 
measurements. Accuracy of such vital signs highly depends 
on the quality of the acquired signal and the presence/absence 
of artifacts generated by other sources such as motion, 
ambient light, sensor position etc. Especially PPG acquisition 
at the wrist is even more susceptible to noise due to poor 
sensor-to-skin contact as a result of arm movements. In 
addition, the personalization factor (calibration) is reported to 
be rather critical [2]. It should be stressed though that “cuff-
less” wearables offer the unique capability of performing 
continuous measurement seamlessly throughout the day, 
offering a plurality of measurements while alleviating the 
white coat syndrome that can greatly influence the outcome. 
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Conventionally, both ECG and PPG, or two synchronized 
PPGs in distant locations are needed in order to extract pulse 
wave velocity (PWV) and pulse transit time (PTT) further 
used as the main features in (BP) estimation. However, such 
approaches while adding to the cost, complexity and usability 
of designing such devices, they do not seem to achieve highly 
reliable measurements. A recent review examined the latest 
developments in terms of cuff-less BP estimation identifying 
the wrist to be a challenging body position for PPG 
acquisition [3]. This ten-year review in fact, identified very 
few (only 3) papers focusing on this type of signals for 
measuring BP and only one, Atomi et al. [4], presented a 
cuff-less BP estimation method using a wristwatch-type PPG 
sensor by applying multiple linear regression on features 
extracted from the PPG and its 2nd derivative. Besides not 
using the same features and ML methods, the main difference 
with our work is that only systolic blood pressure (SBP) was 
estimated. A further study also presented a smartwatch for 
accurately estimating BP in real time [5]. Their device, in 
comparison with ours, combines two pulse oximeters to 
collect two PPG (wrist & finger) signals, filter and cross-
corelate them in order to obtain a PTT and then use a linear 
model to give an estimation of SBP and DBP (diastolic BP). 
Another relevant study of Sasso et al. [6] used a commercial 
sensor and estimated SBP and DBP using feature extraction 
and ML methods with comparable results in terms of 
accuracy to Atomi et al. [4]. 

Considering the assessment of PPG signal quality, 

Elgendi [7] tested eight quality metrics including perfusion, 

kurtosis, skewness, relative power, non-stationarity, zero 

crossing rate, entropy, and the matching of systolic wave 

detectors to differentiate brutally between excellent, 

acceptable and unfit PPG waveforms, labeled as such by 

three experts. As a result, skewness outperformed all other 

metrics in terms of differentiating between excellent PPG 

and acceptable. The work in [8] presented another quality 
index to separate bad from good signals using adaptive 

template matching as a measure to assess reliable heart rate 

obtained both from ECG and PPG. The work in [9] 

identified six morphological features in order to determine 

the quality index of a PPG waveform (positive/negative 

peak-to-peak components), using machine learning.  

In this work we present a method to accurately estimate 

systolic and diastolic BP, based on wrist PPG only, using 

morphological features and machine learning (ML) methods. 

Furthermore, we investigate the possibility of reducing the 

estimation error by incorporating a combination of PPG 

signal quality metrics in order to remove erroneous signals. 
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II. METHODS 

To capture optimal signal at wrist, we designed and 
developed a miniaturized sensor on a fully customized board, 
BLE communication, μ-Optoelectronics, multicolor LED 
sources, OEM optics and custom housing [10]. 

A. Wrist PPG sensor 

Our reflective PPG sensor consists of two green (517nm) 
and two IR LEDs (950nm) and one large area photodiode 
(BPW34S). A lens positioned between the photodiode and 
the skin probes a larger tissue volume by efficiently coupling 
the reflected light. The LEDs are arranged in pairs around the 
Photodiode, offering a uniform tissue illumination. The 
distance between the light sources and the photodiode was 
optimized using light propagation models and a series of 
experiments to gain the best perfusion index. An analog-to-
digital front-end (TI AFE4400) is used to drive the LEDs and 
convert the photodiode current at a sampling rate of 500Hz. 
The gain and timing parameters were optimized to achieve 
optimal signal to noise ratio. The captured signals are 
transferred in real-time to a mobile device or a PC using BLE 
4.2. The sensor is battery powered and was integrated into a 
common wristwatch to model every-day usage (Figure 1).  

B. PPG signal acquisition and SBP, DBP measurement 

The PPG was acquired on the left wrist along with the 
SBP, DBP and pulse rate (PR) using the A&D UA-767 Plus 
BT-C medical grade cuff-based digital blood pressure 
monitor on the same arm and not on the opposite, since blood 
pressure deviation between both sides is common [11]. 
Acquisition was based on a simplified version of the protocol 
described in [12]. We first measured the blood pressure and 
heart rate, then loosened the cuff, waited one minute for the 
vasculature to relax and then measured the green PPG. 
Subsequently we measured the BP&PR again, loosened the 
cuff, waited for one minute and measured the IR PPG. 
Finally, a last BP&PR measurement was taken. The mean of 
those three measurements was taken as a reference for the 
evaluation. Both green and IR measurements consisted of 33 
epochs each of 10s in duration. The left arm was resting on 
the surface of a desk, while the subject was sitting. In total 11 
volunteers were measured 8 times in average over a few 
days. The study protocol complies with the Declaration of 
Helsinki. Informed consent was obtained from all 
participants. All procedures included anonymization 
processes to ensure that the study is executed in strict 
compliance with EU GDPR directive. 

 

Figure 1, miniaturized wearable wrist PPG sensor. 

C. Pre-processing 

Ambient light measurements immediately captured after 
each LED illumination phase, were subtracted. Next, the DC 
component from each epoch was removed (but stored for the 
calculation of the perfusion index) and the signal was 

inverted and de-trended, followed by band-pass filtering (0.5-
5Hz, 4th order). For each epoch the 1st and 2nd derivatives 
were computed and all signals were split into separate pulses, 
based on the absorption peaks (valleys) of the PPG.  

D. Feature extraction 

For each epoch, the pulse rate was calculated using the 
mean peak to peak time, as well as using a common FFT-
based method. In addition, for each pulse a series of features 
that are based on key morphological elements, such as the 
dicrotic notch, pulse onset foot and zero crossings of the 
derivatives were extracted (TABLE I. ) [10]. Pulses for 
which all features could not be extracted were rejected. Our 
dataset consisted of 20639 pulses in total. 

TABLE I.  LIST OF EXTRACTED FEATURES 

F1a Time interval between emission peak and dicrotic notch 

F1b Time interval between dicrotic notch and the following 
absorption peak (end of pulse) 

F2a Amplitude of the emission peak 

F2b Time interval between the foot and the emission peak 

F3a Amplitude of the absorption peak (end of pulse) 

F3b Time interval between the beginning and the end of the pulse 
(absorption peaks) 

F4a Time interval between foot and dicrotic notch 

F4b Amplitude of dicrotic notch 

F5a Pulse rate based on FFT 

F5b Pulse rate based on time between emission peaks 

F5c Pulse rate based on time between absorption peaks 

F6 Time interval between max. positive peak of 1st derivative and 
the dicrotic notch 

F7 Time interval between max. and min. peaks of 2nd derivative 

F8a Amplitude ratio of emission over absorption peak  

F8b Ratio of emission over absorption peak location (time) 

E. Quality metrics 

The following quality metrics were considered to further 
clean the input data by pre-selecting epochs containing all 
necessary morphological features: 

• Signal-to-noise ratio (SNR), calculated relative to a real-
valued sinusoidal, based on the periodogram of the signal. 

• Skewness (SKW), a measure of the symmetry of a 
probability distribution, and has been found to be 
associated with corrupted PPG signals [13]. 

• Kurtosis (KRT), a statistical measure used to describe the 
distribution of observed data around the mean values, 
used for PPG signal quality assessment in [7].  

• Zero crossing rate (ZCR), the rate of sign-changes in the 
signal, used for PPG signal quality assessment in [7]. 

• Short-time energy (STE), the energy of subsequent short 
signal segments, which can be used to describe abrupt 
changes in the signal, e.g. related to motion. 

• RMS of AC component (actual pulse), describing the 
effect of the pulse wave to the propagating light 
attenuation through the probed tissue.  

• Perfusion index (PERF), the ratio of the pulsatile blood 
flow to the non-pulsatile or static blood in peripheral 
tissue, one of the most important features for assessing 
PPG signal quality [14].  

F. Analysis and validation 

 We examined the suitability of five regression methods 
in our attempt to estimate both the systolic and diastolic BP 
using green and IR wavelengths. We tested random forest 
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regression (RFR) without feature standardization, since it is a 
tree-based model. With feature standardization we tested 
SVM regression with three different kernels (rbf, linear, 
poly), as well as multi-layer perceptron (MLP) regression. 
Implementations were based on Python Scikit-learn package 
[15]. Three methods of validation were employed:  

i) Random 10-fold cross-validation on the whole dataset. 
This approach was used to select the regression method, tune 
its hyper-parameters and finally select which quality metrics 
to use for rejecting epochs that do not provide the necessary 
information for accurate BP estimation. This was done by 
first training the regressor on the features of all pulses and 
then analyzing the errors of all pooled validation folds. The 
quality metrics of the outliers (using 25th and 75th 
percentiles) were then analyzed against those of the non-
outliers to find any statistical difference between the 
distributions. Based on this information we selected a 
combination of quality metrics that can be used along with a 
threshold to filter out epochs that would return extreme 
errors;  

ii) Per subject train/test split. Based on the results of the 
previous task we performed this split (66% train, 33% test) to 
test our method on a calibrated-like scenario, since data from 
the same subject were used for both training and testing; and  

iii) Leave-one-subject-out cross-validation. This repre-
sents the least biased method to assess the performance in a 
non-calibrated scenario, where the data of the test subject has 
not been used for training at all. 

III. RESULTS 

TABLE II. shows that RFR performed better than the 
others. Tuning of the hyper-parameters for RFR was 
achieved by performing an initial random search, followed by 
three cycles of grid search, gradually narrowing the search 
space, and concluding in the following: n_estimators=300, 
max_features='auto', max_depth=30, min_samples_split=3, 
min_samples_leaf=1, bootstrap=True. 

TABLE II.  MEAN ABSOLUTE ERROR (MMHG) FOR EACH REGRESSION 

METHOD (RANDOM 10-FOLD CROSS-VALIDATION) 

Regression 
method 

SBP 
Green 

SBP 
IR 

DBP 
Green 

DBP 
IR 

RFR 3.92 3.15 4.23 3.53 

SVR (rbf) 5.91 5.69 6.38 6.61 

SVR (lin) 6.97 6.54 7.39 8.16 

SVR (poly) 16.76 7.64 17.04 7.85 

MLP 5.59 5.36 5.87 6.17 
 

We subsequently performed the analysis of the quality 
metrics of the regression error outliers (group A) against 
those of the remaining instances (group B). As a first step we 
tested the distribution of each quality metric, in each group, 
for normality using D’Agostino and Pearson’s test [16]. 
Since all distributions resulted in not being normally 
distributed (alpha=0.01), we used the Kruskal-Wallis H-test 
to test for equality of the median of both groups. This 
resulted in the rejection of the null-hypothesis in all cases 
except for ZCR related to DBP estimation. Therefore, we 
analyzed the effect of removing “non-ideal” epochs based on 
the quality metrics proposed as the main criterion in terms of 
mean absolute error (MAE) reduction. As a threshold we 

used the median of group A (outliers). This was necessary 
because there was an overlap between the distributions of 
both groups and setting the threshold too close to the non-
outlier median would result in removing too many epochs 
(c.f. Figure 2). 

 

Figure 2, SNR distribution of the regression error outliers and non-outliers 

in estimating SBP for the green and IR colors, as an example. 

The outcome in terms of reduced error is depicted in 
Figure 3. In order to assess the negative impact of removing 
epochs in terms of failed measurements we plotted the ratio 
of % removed pulses to % MAE reduction (Figure 4). 
Finally, based on these results we selected an optimal 
combination of the best performing quality metrics to further 
enhance the rejection performance. We combined the quality 
metrics with the lowest ratio according to Figure 4 with the 
logical “or” operator.  

 
Figure 3, Mean absolute error (mmHg) as a result of removing erroneous 

epochs based on single quality metrics and a combination of them. The first 

set of bars shows the error without any removal. 

 
Figure 4, Ratio of % removed pulses to % mean absolute error reduction by 

either using one quality metric or a combination of multiple. 

The results shown in the last set of columns of both 
previous Figures result from the following combinations: 
{SNR or AC RMS or PERF} for SBP green, {KRT or AC 
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RMS} for SBP IR, {SNR or AC RMS} for DBP green and 
{KRT or AC RMS} for DBP IR.  

System evaluation was performed using a per-subject 10-

fold cross-validation (personalized scenario) with, and 

without removing erroneous epochs (TABLE III. ). The 

results from the final step, the leave-one-subject-out cross-

validation are shown in TABLE IV.  

TABLE III.  MEAN ABSOLUTE ERROR (MMHG), PER SUBJECT 10-FOLD 

CROSS-VALIDATION. BEFORE AND AFTER REMOVING ERRONEOUS EPOCHS 

BASED ON A COMBINATION OF QUALITY METRICS.  

 SBP Green SBP IR DBP Green DBP IR 

All epochs 1.33 1.20 1.26 0.98 

Cleaned epochs 1.05 0.88 1.00 0.65 

% reduced error 21.1 26.2 20.4 33.5 

TABLE IV. MEAN ABSOLUTE ERROR (MMHG), LEAVE-ONE-SUBJECT-OUT 

CROSS-VALIDATION. BEFORE AND AFTER REMOVING ERRONEOUS EPOCHS 

BASED ON A COMBINATION OF QUALITY METRICS.  

 SBP Green SBP IR DBP Green DBP IR 

All epochs 10.13 8.18 11.44 10.32 

Cleaned epochs 7.65 7.97 9.45 9.81 

% reduced error 24.5 17.4 2.6 5.0 

IV. DISCUSSION 

All quality metrics, if used independently for selecting 
erroneous epochs provide an improvement in error reduction, 
although some metrics reject too many epochs and pulses 
consequently (e.g., Figure 4, KRT for SBP green and PERF 
for SBP IR). By selecting a combination of quality metrics, 
we achieve a further MAE reduction, as well as a low 
percentage of rejected pulses. When applied on the 
personalized (calibrated) BP estimation scenario, an error 
reduction of up to 33.5% is achieved. In the leave-one-
subject-out (uncalibrated) case we reach 24.5% less error for 
SBP although DBP shows less improvement, possibly 
reflecting the well-reported fact that the estimation of DBP 
from PPG is more challenging than SBP.  

IR provides better results in all cases, while green is only 
marginally better in the non-calibrated cleaned data. Hence, 
our method of removing erroneous epochs is more efficient 
in the case of green PPG signal, which is most commonly 
used in the field. 

Accuracy, in the existing literature, is most commonly 
calculated using the mean absolute error or the root mean 
square error as compared to clinically validated cuff-based 
BP monitoring devices adhering to standards setting the mean 
error to 5mmHg at most [17]. Our results for the calibrated 
scenario are well below this value. Considering the 
uncalibrated case, the MAE is comparable to that of Atomi et 
al. [4] and Sasso et al. [6]. Atomi et al. report a mean (not 
absolute) error of 1.58 mmHg (SBP only) after manual 
elimination of signals with measurement artifacts. Based on a 
provided figure one can estimate an MAE of 7.4 mmHg. 
Sasso et al. report a MAE of 8.79 mmHg for the SBP and 
6.37 mmHg for the DBP in an uncalibrated case, with manual 
signal selection and longer time windows, as compared to our 
approach. Our MAE of 7.65 (SBP green) and 9.45 (DBP 
green) is comparable with these studies considering the 
respective accuracy limits. However, an advantage of our 
method is that selection of high-quality signals can be 
performed automatically. Moreover, our calculations are 

based on short 10s-epochs, a duration that is well below the 
average, even for finger PPG [3].  

V. CONCLUSION 

A method to accurately estimate SBP and DBP using IR 
and green PPG signals, is presented. Our approach provides 
an automatic mechanism for high-quality PPG epoch 
selection, based on a combination of different quality metrics. 
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