
  

 

Abstract—A promising application of Brain Computer 

Interfaces (BCIs), and in particular of Steady-State Visually 

Evoked Potentials (SSVEP) is wheelchair navigation which 

can facilitate the daily life of patients suffering from severe 

paralysis. However, the outdoor performance of such a system 

is highly affected by uncontrolled environmental factors. In this 

paper, we present an SSVEP-based wheelchair navigation 

system and propose incremental learning as a method of 

adapting the system to changing environmental conditions. 

I. INTRODUCTION 

Brain Computer Interfaces (BCI) provide communication 
workarounds for in an attempt to foster social inclusion and 
interaction for people suffering from the locked-in syndrome 
(LIS), being unable to speak and perform limb or facial 
movements but having intact cognitive function. LIS is 
caused most often by bilateral ventral pontine lesions as a 
result of ischemic stroke or hemorrhage, traumatic brain 
injury, brain stem tumor or neuronal damage (i.e., end-stage 
amyotrophic lateral sclerosis) [1]. Electroencephalography 
(EEG) provides the means to noninvasively decode the 
subject’s intentions by associating a control signal with 
distinct commands. Steady-State Visually Evoked Potentials 

(SSVEP) have been widely used as a control signal mainly 
due to its high success and information transfer rate (ITR) 
achieved with minimal training [2]. BCI controlled 
wheelchairs enable tetraplegic patients to operate an electric 
wheelchair with no help of a second person, granting 
autonomy and freedom. The most recent extensive review on 
BCI enabled wheelchairs may be found in [3]. Analysis of 
SSVEP signals include feature extraction methods such as 
FFT [4], PSD [2][5], and CCA [4][6] among others, whereas 
classification schemes most often include SVM followed by 
LDA [7]. Performance evaluation even not actually 
comparable due to heterogeneous experimental conditions 
reach 83±15% (success rate) and 70.3±28.8 bits/min (ITR) in 
controlled laboratory environments, highly affecting a 
system’s feasibility and robustness [2]. Realistic conditions 
greatly influence the outcome of such applications mainly 
due to altered brain waves reflecting altered heart rate and 
cortisol levels affected from external stimulations including 
sounds, movements and smells [7]. Our work studies the 
applicability of SSVEP-based BCI in realistic indoor and 
outdoor wheelchair driving conditions and proposes adaptive 
classification schemes in an attempt to compensate for 
alternating environmental conditions. 
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II. METHODS 

A. System Description 

In our attempt to navigate a wheelchair in real world 
conditions using an online SSVEP-based BCI system and 
evaluate how the environmental conditions affect the 
performance of the system, we used an iChair MC Basic 
wheelchair from MEYRA GmbH that can be navigated both 
indoors and outdoors. The communication between the BCI 
system and the wheelchair is achieved by a custom made 
Electric Wheelchair Controller (EWC) (Fig. 1), which 
replaces the joystick module and provides a wired USB 
communication to the BCI. Particularly, the BCI system 
could directly send the detected user’s commands to the 
EWC, thus controlling the wheelchair’s direction. 

The SSVEP-based BCI system utilized four flickering 
targets to perform four navigation options, FORWARD, 
TURN LEFT, TURN RIGHT and BACKWARD. The targets 
consisted of black-and-red checkerboards over a black 
background and they were arranged in a square layout at each 
corner (Fig. 1). The visual stimuli were displayed on a 15.6" 
Full HD monitor with 60Hz refresh rate and 1920x1080 px 
resolution. The checkerboards were flickering (i.e. reversing 
their pattern) at different frequencies (up: 3Hz, right: 4.28Hz, 
back: 3.33Hz and left: 3.75Hz). The SSVEP components 
elicited by the checkerboard stimuli are modulated at the 
second harmonic, i.e. at the pattern reversal rate of the target 
(6Hz, 8.56Hz, 6.66Hz and 7.5Hz, respectively) [8]. The 
STOP command is acquired by gazing the non-flickering 
center of the screen. The SSVEP stimulator was implemented 
using the Unity Real-Time Development Platform. 

The EEG recording was performed using the wireless 
amplifier g.MOBIlab+ (Guger Technologies, Graz, Austria) 
at a sampling rate of 256 Hz using four wet cup electrodes 
(10 mm diameter, gold plated) located over the visual cortex, 
at positions O1, Oz, O2 and POz (international 10-20 
system). The ground and the reference electrodes were 
positioned at FPz and behind the ear, correspondingly. 

B. Experimental Procedure and Participants 

Six healthy participants (5 males and 1 female) 
volunteered for this study, aged between 27 and 44. All 
participants were informed about the nature and the purpose 
of the experiment and they gave their informed consent to 
participate in the study. Both experiments and experimental 
procedures were in compliance with the EU General Data 
Protection Regulation (GDPR), in accordance to the Helsinki 
Declaration of 1975, as revised in 2000 and was approved by 
the FORTH Ethics Committee (95/22-9-2020). None of the 
participants had any history of epileptic seizures or other 
neurological disorders and did not use any drug or 
psychotropic medication, while they all had normal or 
corrected-to-normal vision. 
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The experiment consisted of three different sessions: (i) 
an offline training session, (ii) an online indoor session, and 
(iii) an online outdoor session. During the training session 
participants were comfortably seated in a normal office 
environment with both natural and artificial light, at a 
distance of 60 cm from the monitor.  

The training session consisted of 4 trials, with 1-2 min 
breaks in between. In each trial the participants had to fixate 
continuously for 5s at each one of the targets, randomly 
indicated by an arrow shaped visual cue. Each trial lasted 
75s. We used 65% of the collected EEG data to train our 
system, whereas 35% of data were used to calculate the 
accuracy of the system. 

In the online indoor session, the stimuli presentation was 
projected on a laptop monitor placed in front of the user. The 
participants had to navigate the wheelchair in a typical indoor 
area. The participants did not have to follow a predefined 
route and could navigate freely for about 7 min. They were 
instructed to equally use all four movement commands – 
including the STOP command. During the online session, 
both the EEG data and the desired command (ground truth) 
were recorded. For the latter, we instructed the participants to 
press the respective arrow keys of the laptop’s keyboard 
when they wanted to change their direction (gaze on a target). 

The space key was used for the STOP command (gaze at the 
center).  

The experimental procedure of the online outdoor session 
was similar to the online indoor one, except that it took place 
in an outer courtyard. The weather conditions on the days of 
online outdoor sessions were mostly sunny with light winds. 
Fig. 2 depicts the top view of the places where the online 
sessions were held. 

C. Data Processing 

The EEG data were segmented into epochs of 3s, 
overlapping by 0.5s. They were filtered using a 5th order 
Butterworth bandpass filter with cut-off frequencies of 4-
40Hz. Epochs at which the participants changed their gaze 
from one target to the other, were removed.  

We performed feature extraction on filtered epochs using 
Canonical Correlation Analysis (CCA). CCA is a 
multivariate statistical technique that has been widely used in 
SSVEP-based BCI systems due to the amplification of signal-
to-noise-ratio of the SSVEP signals [9][10][11]. The 
calculated CCA correlations were the input of three simple 
and fast classification algorithms: Stochastic Gradient 
Descent (SGD), Naïve Bayes (NB) and Random Forest (RF). 
The above classifiers have also been applied in incremental 
online learning [12], a method that we will employ later in 
our analysis. For the algorithms’ implementations, we used 
the scikit-learn [13] and scikit-multiflow [14] packages. 

As mentioned before, the data from the training session 
were used to train all three classifiers to detect five classes 
(corresponding to four movement options and STOP 
command) and to calculate the offline accuracy of the 
system. Using one of the three trained classifiers, in this case 
the SGD, we performed the two online navigation sessions. 
We selected SGD for online navigation because its default 
parameters fit a linear SVM model, that is widely used on 
SSVEPs. The recorded online indoor data were utilized for 
the evaluation of system’s performance in an indoor 
environment, whereas the online outdoor data were used for 
the offline incremental learning of the aforesaid classifiers.  

We performed incremental learning only on outdoor data 
because the environmental conditions change immensely 
from indoors to outdoors. Our goal was to assess how 
severely real-life outdoor conditions (i.e., bright natural light, 
noise and vibrations caused by wheelchair movement) affect 
classifiers’ performance and study how the classifiers could 
improve their performance using incremental learning in 
such an exemplar online outdoor session. 

The incremental online learning of the classifiers 
involved their continuous adaptation to new (outdoor) data in 
order to extend their previously acquired knowledge [15]. To 
this scope, we divided the outdoor data into four batches. 
Each batch consisted of about 200 epochs that had relatively 
similar class distributions. Epochs of shift gazing where 
removed. For each batch we repeated the following steps: (i) 
we evaluated the classifiers’ performance based on their 
prior knowledge, and (ii) we partially trained them to update 
their knowledge using the calculated CCA correlations in 
each new batch. The analysis started using the “vanilla” 
classifiers, the ones that have been trained on the training  

Figure 2. Online session's location (a) indoor, and (b) outdoor area 

 

 
Figure 1. System Description 
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session’s data only. Subsequently we evaluated the 
“incremental” ones, being trained continuously. 

III. RESULTS 

To evaluate our system, we calculated the respective 
accuracies, for each classification algorithm and for each 
participant, in both offline and online data and examined the 
use of incremental learning as a method to adapt to changes 
in real world conditions. Figure 3(a) presents the overall 
accuracy of the system in various environments: (i) the ideal 
environment of the training session, (ii) the environment of 
an indoor common area, and (iii) an outer courtyard. In 
Figure 3(b) we compare the performance between the vanilla 
and incremental classifiers in each batch of online data in 
order to assess the ability of incremental classifiers to learn 
and adapt in an outdoor environment. Furthermore, for each 
participant, we provide the incremental algorithms’ 
evaluation in Figure 3(c). In TABLE I we list the mean 
recorded time of incremental learning for each classifier, as 
well as the time needed in order to infer a prediction on an 

Intel Hades Canyon 8i7HVK (Intel Corei7-8809G 8, 8GB 
RAM, AMD Radeon RX Vega M). 

IV.  DISCUSSION 

Wheelchair navigation is a very promising application of 
SSVEP-based BCIs because it offers the unique sense of 
autonomy and independence to patients with neuromuscular 
dysfunctions. Of crucial importance is its performance, which 
is significantly affected by the environment in which the user 
desires to navigate the wheelchair. 

The results of this study indicate that all participants had 
high accuracy scores (above 84%) on the test data of the 
training session for all three classifiers (Fig. 3 (a)). The test 
data were recorded in the ideal environment of an office, 
where participants could sit comfortably and the lighting 
conditions were mild.  

In the online indoor session, where the BCI was mainly 
affected by the wheelchair movement, the performance 
worsened slightly (SGD: +8%, NB: +9.2%, RF: +10.7%) for 
5 out of 6 participants, compared to the corresponding test set 
(Figure 3(a)). Participant p03 had a high decrease in 
performance (SGD: -40.8%, NB: -16.9%, RF: -21.9%) even 
though we noticed a good system’s response during the 
online session. However, the participant informed us about 
having difficulties in synchronizing the use of keyboard with 
the BCI layout.  

The conditions of the online outdoor session included 
bright natural light and intense vibrations due to the 
wheelchair movement. The system performance for the 

 
Figure 3(a) Evaluation of the SSVEP-based navigation system on test set (offline test data of training session), on online indoors data and on online 

outdoors data per algorithm per participant. Evaluation on test and indoors set were performed with vanilla classifiers.  (b) Vanilla and incremental 
system’s accuracy on online outdoors data per algorithm per participant per batch. (c) Accuracy of incremental classifiers per participant.  

 

TABLE I 

MEAN TIME OF INCREMENTAL LEARNING IN A BATCH OF DATA AND 

MEAN TIME PREDICTION FOR A MOVEMENT COMMAND PER 

CLASSIFICATION ALGORITHM 

 Incr. Learning Time (s)  Prediction time (s) 

SGD 0.006767 0.000103 

NB 0.003202 0.000175 

RF 1.475511 0.001077 
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majority of participants was highly reduced compared to both 
test set and online indoors (Fig. 3(a)). Participants p02 and 
p06 did not encounter any problems during the outdoor 
navigation. Although the EEG artifacts were similar during 
both online sessions, during the outdoor navigation they 
tended to be more intense (mostly motion related) due to the 
roughness of the ground.  

The results in Fig. 3(a) show that the use of incremental 
learning as a method of system’s adaptation to the outdoor 
environmental conditions can improve the performance of the 
system and therefore its reliability. Fig. 3(b) displays the 
incremental classifiers’ accuracy per batch in comparison to 
the vanilla one.  

We notice that the incremental SGD, NB and RF perform 
better than the respective vanilla classifiers in each batch of 
data. Nevertheless, incremental SGD has higher improvement 
scores than incremental NB and RF classifiers. That is, 
participants p01, p03, p04 and p05 using the incremental 
SGD classifier for the outdoor navigation could improve their 
navigation accuracy by 47.5%, 20.4%, 15.6% and 42.7%, 
correspondingly. The respective percentages for incremental 
NB are -0.3%, 10.6%, 48.9%, 28.3% and for incremental RF 
are -4.7%, 12.7%, 24.6%, 5.7%. We believe that p01’s 
negative score for NB is insignificant due to the overall high 
score of the subject whereas for RF it is a result of classifier’s 
inability to learn from the first batch of data.   

Fig. 3(c) presents the performance of the incremental 
classifiers for each participant. Specifically, incremental SGD 
performs better for participants p01 and p06, incremental RF 
for participants p03 and p05 and incremental NB for p04, 
whereas for participant p02 incremental SGD and RF have 
similar performances. These results show a preference for 
SGD and RF.  However, in an online application in which the 
time needed for learning and prediction is pivotal, 
incremental SGD outperforms incremental RF (Table I). 

It should be noted though that the integration of 
incremental learning in a real-life wheelchair navigation 
system can be tricky. We suggest the following scenario: A 
user desires to navigate in an outdoor area, however, the 
system, due to bright lightning or intense movement 
vibrations, does not translate commands correctly. The 
system would recognize such a weakness by sensing an 
unusual sequence of predicted commands (e.g. repeatedly 
sequence “LEFT”) or by inferring an unusual path using GPS 
and navigation maps. Then, it would automatically initiate an 
incremental learning session in which the system would 
instruct the user (e.g. via voice commands or arrows) to 
follow some predefined commands by gazing at the 
corresponding targets in order to adapt the system to the new 
conditions. 

V. CONCLUSION 

In this study, we present an SSVEP-based wheelchair 
navigation system. We evaluate its performance both offline 
and online, using SGD, NB, and RF classification algorithms, 
in heterogeneous environments including an indoor common 
area and an outer courtyard to see how the real-world 
conditions affects its accuracy. We propose, for the first time 
to our knowledge, incremental learning as the means to adapt 

the system to new environments. By comparing 
“incremental” performances with the respective “vanilla” 
ones, we show that incremental learning is a promising 
method achieving system’s adaptation to environmental 
changing conditions. It works best in real time applications, 
as it is fast, memory efficient and can enhance the system’s 
efficiency, safety and reliability. 
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