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Abstract— This work presents an approach for EEG source
localization when strong priors on predominant frequencies
in the activities of the source are available. We describe the
fundamentals of the used source reconstruction method based
on a greedy approach, which can be applied indifferently in
the time or frequency domain. The method is evaluated using
simulated data reproducing realistic recorded activities in the
context of fast periodic visual stimulation. In particular the
advantage of reconstructing the source in the frequency domain
against time domain is quantified in a realistic setup. Finally,
the performances of the method are illustrated on real EEG
signals recorded during a fast periodic visual stimulation task.

Index Terms— EEG source localization, frequency domain,
sparse inverse problem

I. INTRODUCTION

One of the most widely used techniques for exploring the
electrical brain activity is the electroencephalogram (EEG).
The EEG electrodes, placed on the surface of the head, cap-
ture potentials generated by current sources situated inside
the brain. EEG source estimation and localization implies a
wide panel of techniques to reconstruct the source map and
their activities [1]. Most importantly, when determining the
sources that generate the EEG signal, constraints have to be
incorporated in order to constrain and regularize this highly
ill-posed inverse problem. In particular, we are interested, for
reasons explained below, in approaches enforcing sparsity,
for which the main hypothesis is that the recorded signals
are generated by few active regions, possibly organized in a
network.

While classical source localization methods are devel-
opped for time-domain signals, in some situation the rele-
vant information lies in specific frequency bands. Very few
approaches were proposed directly in the frequency domain
( [2]–[4]), see also [1] for a brief review. Besides sparsity,
we narrow down our interest to this particular situation,
i.e., when sources of interest are band-limited or even pure
oscillations.

Indeed, our target application is source reconstruction
during fast periodic visual stimulation of the brain (FPVS).

FPVS is a privileged technique to study the brain face
recognition system, as it is well controlled and provides
highly reproducible responses [5] with strong SNR. This
kind of protocol consists in a periodic presentation of natural
images to the observer at a given base frequency (6Hz for
the protocol used in this work), periodically interleaved with
face images (at an oddball frequency: 1.2 Hz in this study,
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i.e., every 5 images). Combined with invasive electrophys-
iological measurements (intracerebral EEG, also known as
SEEG), these protocols allowed to identify the main areas
recruited for face recognition along the ventral occipito-
temporal cortex with a right predominance [5]. These areas
synchronize their activities with the visual stimuli, both at
the base and the oddball frequencies as illustrated in Fig. 3.

We address in this paper the problem of reconstructing
the responsive sources to such protocols from scalp EEG
measurements, by taking benefit of the oscillatory nature of
the sources of interests and of the fact that they are well
localized in specific brain areas. We focus thus on frequency
localized and sparse approaches. More precisely, we adopt
in this work a method derived from the Matching Pursuit
principle used for sparse localization in EEG called Single
Best Replacement (SBR) [6] already applied on EEG for
time-frequency based localizations [7].

In the present work, the reconstruction performances are
analyzed from two angles: by applying the sparse source
localization methodology in the time domain after filtering
in the frequency bands of interests, as well as directly in
the frequency domain after a FFT transform of the recorded
channels.

II. METHODOLOGY/PERIODIC SOURCE LOCALIZATION

The EEG forward model consists in calculating the electri-
cal potential observed on a given sensor when the configura-
tion of the underlying electrical sources and the biophysical
properties and geometry of the propagation environment
are known [8]. A general linear forward model is based
on a gain matrix, known as lead-field, which encodes the
propagation coefficients between a freely oriented source at
any position in the head and the measuring electrodes. A
simplified model considers fixed orientation sources (i.e. for
every possible position only one orientation is considered).
Although restrictive, this simplified lead-field can be jus-
tified by biological considerations: dipolar current sources
represent population of pyramidal neurons, which are not
freely oriented but mostly orthogonal to the gray matter
surface. Thus, a linear forward model projecting N sources
to M electrodes expresses scalp recordings X as a linear
combination of source amplitudes S through the propagation
coefficients stored in the lead-field M × N matrix A, plus
noise ε. Every column of A corresponds to a specific source
position (i.e., contains the propagation coefficients between
that specific position and the electrodes).

X = AS+ ε (1)
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The linear forward model in (1) is generally expressed in
the time domain, meaning that X and S are, respectively,
measurements and source amplitudes at different time in-
stants (matrices M × T and S × T , with T the number
of time samples). But model (1) is valid under any linear
transformation of the signals such as the Fourier transform
or linear filtering in specific frequency bands. Moreover, the
model is valid for any specific time instant, when considered
in time, as well as for any specific frequency bin (or band
after band-pass filtering), when considered in frequency.

Since the lead-field or gain matrix A (M ×N,M < N)
has a number of electrodes M much smaller than the number
of possible source locations N , the system does not have a
unique solution and constraints need to be imposed in order
to reduce the solution space. Under sparsity regularization,
the estimates of the source amplitudes and of their localiza-
tion are given by (2):

Ŝ, Ĵ = argmin
S,J

(
∥X−AJS∥22 + λNJ

)
(2)

where J contains the indices of the selected columns from
the lead-field A, representing source positions, NJ represents
the number of selected columns (cardinal of J), S are the
magnitudes of the (selected) sources and AJ is the sub-
matrix containing the J indexed columns from A (hats
indicate estimates of the indices J and source amplitudes
Ŝ; estimating J is equivalent to choosing an estimated sub-
matrix ÂJ ).

In [6], the minimization problem (2) was addressed by a
penalized Orthogonal Least Squares (OLS) regression called
Single Best Replacement (SBR): the first term decreases
with every new added source (index in Ĵ , thus column
in AJ and respective magnitude in Ŝ), while the (second)
penalization term increases with a fixed amount defined by
the user parameter λ. The algorithm, equivalent to classical
OLS for λ = 0, iterates by adding or removing sources until
convergence to a more or less sparse solution depending on
the user choice of λ. While the original SBR is applied on
vectors (i.e., X and S are column vectors), we present here
two versions applied on matrices:

• Time domain. In this case, X is a matrix constructed as
follows: (1) band-pass filter the EEG signals (either at
1.2Hz or at 6Hz, see above) using narrow band (0.2Hz)
2nd order Butterworth filters; (2) define epochs based
on the FPVS frequencies (base or oddball, i.e., 1/1.2
or 1/6 seconds) and average them to reduce the noise.
The final X matrix contains on every row a band-pass
averaged signal having the length of one epoch;

• Frequency domain. After applying the fast Fourier trans-
form (FFT) to every electrode, the complex values of
the FFT at every frequency of interest (e.g., 1.2 Hz
and harmonics or 6 Hz) were selected to construct the
frequency domain X complex matrix. Note that both
positive and negative frequencies need to be considered,
as the FFT has hermitian symmetry and both are needed
in order to avoid phase indetermination.

Applying the matrix version of the SBR will then yield

real time or complex frequency amplitudes Ŝ and, most
importantly, the set of indices Ĵ that will allow source
localization.

III. RESULTS

A. Data simulation

Fig. 1: Simulation setup. In magenta, oddball sources
(1.2Hz); in blue, base frequency sources (6Hz). The filled
circles correspond to C1/C3, empty circles to supplementary
sources in C2/C4 (see text). The 64 electrodes are repre-
sented as dots.

In order to test the feasibility of the source localization
method, EEG scalp potentials were simulated by using a
realistic head model with three comparments (Colin 27) ex-
tracted from Brainstorm toolbox [9]. The cortical layer mesh
(inner shell) has 7292 nodes, the outer skull and the scalp
mesh (outer shell) have 1922 nodes. The source space con-
sisted of a regularly spaced grid (7 mm) constructed inside
the inner shell, which yielded N=6184 source positions. The
scalp electrodes (M=64) were simulated according to the
approximate 10-10 system of a Biosemi Cap. The leadfield
matrix A was constructed using fixed orientations for all
sources, orthogonal to the surface of the head. The EEG
scalp potentials were simulated by projecting the sources
on the sensors using a boundary element model (BEM)
implemented in the Helsinki toolbox [10].

Realistic EEG signals during FPVS contain peaks at
oddball and base frequencies, i.e., 1.2Hz and 6Hz (and
harmonics), being thus a mixture of sources at all these
frequencies. But for our purposes, as the localization is
performed either after band-pass filtering or directly on the
peaks of interest after Fourier transform, the actual com-
bination (the respective contributions) of oddball and base
frequencies is irrelevant, the important difficulties coming
from the interactions between sources having the same
frequency. We have simulated different configurations of
sources as follows (see Fig. 1):
C1 A single sinusoidal source at fo = 1.2Hz, placed in the

right hemisphere, at the approximate location of one
of the face responding regions on the posterior ventral
visual stream.

C2 Two sources at fo = 1.2Hz, the one used in C1 plus
a second one, approximately corresponding to a face
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responding region in the right anterior ventral visual
stream, about 8cm far from the first 1.2Hz source and
deeper in the brain. This second source was delayed
with respect to the first 1.2Hz source (phase delay π/6).

C3 Two sinusoidal sources (same frequency fb = 6Hz,
same phase) were placed symmetrically in left and right
hemispheres, approximately in the primary visual areas
in the posterior part of the brain. The distance between
them was 8 cm.

C4 Four fb = 6Hz sources, the two from C3 and two more,
also symmetric between the two hemispheres, but closer
one to the other (5 cm) and each one relatively close
to the 6Hz sources used in C3 (∼3cm). They were also
synchronized between them (same phase) and slightly
delayed with respect to the other 6Hz sources (phase
delay π/10).

The amplitudes of all sources were identical (but their
contribution to the scalp EEG varied of course due to the
lead-field coefficients).

We have simulated increasingly complex signals by com-
bining projections of the source configurations described
above (4 types of EEG, from one 1.2 and two 6Hz sources to
two 1.2 and four 6Hz sources). For each combination, white
Gaussian noise was added to the simulated scalp potentials.
Seven noise power levels have been used, computed so as
to reach SNRs in the set {20dB, 10dB, 3dB, 0dB, -3dB, -
10dB, -20dB} with respect to the projection of the first 1.2Hz
source (C1). One hundred simulations per type of EEG
and noise level were performed using the set up described
previously.

B. Performance criteria on simulated EEG data

To compare the performance of the localization proce-
dures, two criteria were used: the Goodness of Fit (GOF,
computed with respect of the no-noise simulation) and a
weighted distance of localization error (wDLE). The GOF
is defined as:

GOF = 1− ∥AJS− ÂJ Ŝ∥2

∥AJS∥2
(3)

where AJS are the simulated electrical potentials without
noise (see 1) and ÂJ Ŝ are the estimated potentials calculated
as the projection of the reconstructed sources on the EEG
electrodes. The higher the GOF, the closer is the estimation
to the originally simulated data.

We also propose an original weighted distance criterion
derived from the Distance of Localization Error (DLE) [11],
where the source distances are weighted by their contribu-
tions to the reconstructed potentials:

wDLE =

∑
j∈J

αj min
i∈I

∥rj − ri∥

2
∑
j∈J

αj
+

∑
i∈I

αi min
j∈J

∥ri − rj∥

2
∑
i∈I

αi
(4)

J is the set of the NJ reconstructed sources at positions
{rj}j∈[1..Nj ], and I is the set of the NI simulated sources
placed at positions {ri}i∈[1..Ni]. The coefficient αj is com-
puted as the norm of the projection of the jth estimated

source on the electrodes divided by the norm of the re-
constructed scalp map. Similarly, αi is the weight given
by the ratio of the norm of the potential due to the ith

simulated source with respect to the norm of the potential of
the simulated data. The first term of equation (4) penalizes
the presence of false positive sources, while the second term
penalizes true sources that are not recovered by the method.

C. Simulation results

Fig. 2 sums up the performance in term of true positives
(TP)/false positives (FP) and GOFs, and Table I provides
averages values of wDLE for each configuration.

TABLE I: Mean ± std wDLE values of the source local-
ization in frequency and time domain for the four source
configurations (in mm; 100 simulations per SNR)

C1 C2
SNR
(dB)

Frequency Time Frequency Time

20 0± 0 0± 0 0.02± 0.01 0.08± 0.07

10 0± 0 0± 0 0.13± 0.40 1.36± 2.57

3 0± 0 0.75± 1.52 1.19± 2.22 4.25± 4.09

0 0± 0 3.22± 3.90 1.81± 3.03 7.13± 4.16

-3 0± 0 10.07± 8.12 3.02± 3.76 11.11± 4.67

-10 1.21± 2.24 35.75± 11.71 7.07± 4.08 25.07± 7.68

-20 34.93± 11.69 47.57± 8.29 24.11± 6.90 38.54± 4.75

C3 C4
SNR
(dB)

Frequency Time Frequency Time

20 0.04± 0.02 0.05± 0.02 18.06± 0.01 18.06± 0.01

10 0.14± 0.05 0.16± 0.07 18.06± 0.02 18.06± 0.04

3 0.30± 0.12 0.35± 0.15 18.03± 0.24 17.92± 0.61

0 0.42± 0.16 0.48± 0.21 17.96± 0.67 17.87± 1.02

-3 0.58± 0.22 0.65± 0.28 17.98± 0.90 17.96± 1.04

-10 2.62± 3.39 4.84± 5.72 18.17± 1.31 18.66± 1.44

-20 25.79± 10.82 30.38± 12.19 19.82± 2.00 21.28± 5.24

When a single superficial source is simulated for a given
frequency (C1), the method is robust and tends to fail for
strong noise only: the localization in frequency domain is
accurate up to −10dB SNR, with the low wDLE and high
GOFs (near 1), very few to no FP, while in the time domain
the performance becomes weaker from the −3dB case (about
2 FP and wDLE over 1cm on average for this noise level).
When two fo simulated sources are introduced (C2), the
method clearly struggles in recovering the deeper (second)
source, the frequency approach being accurate up to −3dB,
while in the time domain the performances are mild from
3dB SNR, where the number of FP is near 2 with associated
GOF values over 30% on average. It is worth noticing that
the localization based on FFT produces globally much less
FP in these two configurations of fo sources compared to
the time domain.

Considering the reconstruction of the fb = 6Hz sources,
the inversion in frequency and time domain do not differ
significantly. When two fb sources are simulated (C3),
the reconstruction is accurate over all SNRs (putting the
−20dB case aside). It can be seen that about two FP are
consistently found, but with very low amplitude and thus
with unsignificant impact on the reconstructed data (low
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Fig. 2: Source localization performances. Top row: number of true positives (correctly localized sources, within 1 cm from
the simulated source). Bottom row: number of false positives (falsely-localized sources). The results are displayed for the
four source configurations, for different levels of SNR. For every SNR, the first bar shows the performance in frequency
domain and the second bar in time domain. The color represents the accuracy of reconstruction (GOF), see colorbar.

FP GOFs and low wDLE). However when four fb sources
are simulated (C4), the method is failing even in the most
favorable 20dB SNR case. Let recall that the first and second
groups of two sources are synchronized two by two and
slightly delayed between the two groups, and that they are all
placed in the occipital areas. This becomes infeasible for the
method to distinguish between them as they are relatively
close in a region where the EEG sensors are only partly
covering the projection of the dipoles. A closer look at the
algorithm first iterations reveals that the algorithm is misled
from the beginning by choosing false sources explaining a
high portion of the data (see the high GOFs for the FP in Fig.
2. C4, bottom), and the SBR strategy is not able to discard
them afterwards.

To sum up, when the method is able to recover the sources,
a clear advantage is given to the inversion in the frequency
domain (C1 and C2 configurations), as the method focused
on the frequency value fully supporting the information and
as the temporal filtered version of the data still collects some
noise residuals. Such strategy is helpful to recover profound
sources, an important aspect when the reconstruction is car-
ried out from the EEG measurements. In some case of source
configurations where the source map is not identifiable by the
method (e.g., close and synchronised activities), the inversion
in the frequency domain is not helpful in disentangling the
contributions of the sources.

D. Real signals

An example of the frequency based localization method is
given here, on a 64-channels real EEG recording (BioSemi

Cap) at a sampling rate of 256 Hz. Two approximately 1
minute long sessions were recorded using the protocol de-
scribed in the introduction [5]. After average re-referencing,
two sessions averaging and Fourier Transform, one can
obtain spectra like the one presented in Fig. 3, with peaks
at the oddball frequency of 1.2 Hz and harmonics (2.4 Hz,
3.6 Hz, etc.). This particular spectrum was recorded on the
PO8 electrode (see also the power scalpmap at 1.2 Hz,
same Figure). One can also notice an important peak in the
spectrum at the base frequency (6 Hz).

The frequency localization method was performed after
selecting in the X matrix (1) the complex values of the FFT
corresponding to the peaks at 1.2, 2.4 Hz and 3.6 Hz and their
negative counterparts. We used the same head model as for
the simulated signals (lead-field matrix A). The result, after
tuning λ to the norm of X divided by 20, are shown in Fig.
3. Three sources were reconstructed (GOF=0.88 with respect
to the measured data X) in the posterior brain region and
both hemispheres (results to be compared for example with
the fMRI images from [12]. Fig. 2). Of course, these results
should be interpreted with caution. For example, the lead-
field matrix that we used is designed for the simulation, but
not optimized for the subject on which the EEG recordings
were performed (nor actually optimized for sources in the
gray matter with more carefully selected orientations).

IV. CONCLUSION

In this paper, we have proposed a sparse source estimation
method in the context of oscillatory source activities, in
response to periodic stimulation as observed e.g., in FPVS.
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Fig. 3: Frequency source localization in real signals. Three sources were reconstructed (red dots) from a data vector with
the peaks at the frequencies 1.2, 2.4 and 3.6 Hz. The scalpmap at 1.2Hz is given at the left, centered on the PO8 electrode,
for which the spectrum is displayed nearby.

The method can be applied on either an epoch-averaged
band-pass filtered version of the signal centered on the
frequency of interest or directly on the FFT of the signal,
by considering the complex values associated with the peaks
at these frequencies.

We have demonstrated on simulation the higher robustness
of this latter version, as the information of interest is maxi-
mally concentrated in these peaks. In particular, this approach
is likely to provide more reliable reconstruction of deep brain
sources from the EEG surface measurements. However, our
simulation results also illustrate that the reconstruction of
synchronized sources concentrated in a limited area of the
brain is a highly challenging task for the proposed iterative
method, whatever the chosen reconstruction domain. The
method fails and converges to an equivalent solution with
high GOF but wrong source estimates, which brings us back
to the initial question of the regularization of this severely
ill-posed inversion problem. In order to solve such indetermi-
nacy, it appears to be necessary to introduce into the method
additional neurophysiological or anatomical constraints on
the position of the sources.

We finally illustrate our methodology on an example of
real data recorded during an FPVS protocol. The results,
which need to be further analysed and evaluated using a brain
atlas and a wider panel of subjects, is nevertheless coherent
with the present knowledge on brain face responsive areas
and is a motivation to pursue our research in this direction.
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