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Abstract— Cardiac Cine Magnetic Resonance (CMR) Imag-
ing has made a significant paradigm shift in medical imaging
technology, thanks to its capability of acquiring high spatial
and temporal resolution images of different structures within
the heart that can be used for reconstructing patient-specific
ventricular computational models. In this work, we describe
the development of dynamic patient-specific right ventricle
(RV) models associated with normal subjects and abnormal
RV patients to be subsequently used to assess RV function
based on motion and kinematic analysis. We first constructed
static RV models using segmentation masks of cardiac chambers
generated from our accurate, memory-efficient deep neural
architecture – CondenseUNet – featuring both a learned group
structure and a regularized weight-pruner to estimate the
motion of the right ventricle. In our study, we use a deep
learning-based deformable network that takes 3D input volumes
and outputs a motion field which is then used to generate
isosurface meshes of the cardiac geometry at all cardiac
frames by propagating the end-diastole (ED) isosurface mesh
using the reconstructed motion field. The proposed model
was trained and tested on the Automated Cardiac Diagnosis
Challenge (ACDC) dataset featuring 150 cine cardiac MRI
patient datasets. The isosurface meshes generated using the
proposed pipeline were compared to those obtained using
motion propagation via traditional non-rigid registration based
on several performance metrics, including Dice score and mean
absolute distance (MAD).

Index Terms— Condensation-optimization network, right
ventricle segmentation and propagation, image registration,
displacement field reconstruction, patient-specific modeling

I. INTRODUCTION

According to the recent report from the American Heart
Association, one-third of all deaths in the U.S. are caused
by cardiovascular diseases (CVDs), some associated with
compromised function of the right ventricle [1]. Important
examples of such heart diseases include right ventricle (RV)
ischemia and hypertrophy which may lead to abnormal RV
motion. An efficient method that can accurately estimate
the motion of the RV from cardiac images with the overall
goal to study the RV kinematics could be used as a viable

∗The first two authors share equal joint first authorship.

indicator of the progression of the disease and evaluation of
cardiac function at an early stage.

The goal of cardiac motion estimation is to compute the
optical flow representing the displacement vectors between
consecutive 3D frames of a 4D cine CMR dataset, an
image registration problem. To date, a number of approaches
for motion estimation from cine MRI have been studied,
including optical flow-based registration methods [2] and
techniques based on feature tracking [3]. Metaxas et al.
[4] proposed a physics-based framework for reconstructing
the motion of the LV and RV from MRI-SPAMM (Spatial
Modulation of Magnetization) data. Here, the authors deform
the computed dynamic models with forces computed from
the automatically segmented boundary data-points. Similarly,
Park et al. [5] presented the use of finite element methods
(FEM) to recover the right ventricle (RV) motion using
parameter functions.

Recent approaches involve integrating anatomical data
into a consistent framework to build patient-specific models.
Hoogendoorn et al. [6] proposed a bilinear model for the
extrapolation of cardiac motion assuming that the motion of
the heart is independent of its shape. Xi et al. [7] proposed
a bi-ventricular computational model to analyze ventricular
mechanics in a pulmonary arterial hypertension patient from
cine cardiac MRI images.

Although cardiac cine MRI has provided a non-invasive
method for studying global and regional function of the heart,
most of these studies have been centered on the LV. In light
of the thin wall structure of the RV and its asymmetric
geometry, there have only been very few research endeavors
exploring the kinematics of RV, including the extraction
of the RV motion and generation of patient-specific RV
anatomical models. The goal of this work is to develop an
approach for extracting the RV motion from cine cardiac
MR image sequences and generate deformable endocardial
RV models that can be later used to study RV kinematics as
a biomarker for studying RV-related cardiac disease.

In this work, we propose a deep learning-based approach
for extracting the frame-to-frame RV motion from cine
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cardiac images, and using this motion, along with segmented
isosurface meshes at ED, to generate dynamic, deformable
models of the RV. Here, we illustrate the potential of the
CNN-based 4D deformable registration technique to build
dynamic patient-specific RV models across subjects with
normal and abnormal RVs. We used the segmented mask of
the RV endocardium at all cardiac frames generated via our
previously proposed CondenseUNet [8], which substitutes
the concept of both standard convolution and group convo-
lution (G-Conv) with learned group-convolution (LG-Conv).
Following segmentation of the ED cardiac frame, we gener-
ate isosurface meshes, which we then propagate through the
cardiac cycle using the CNN-based registration fields. Lastly,
we compare these propagated isosurface meshes to those
generated directly from the segmentation masks obtained
from CondenseUNet [8].

II. METHODOLOGY

A. Imaging Data

For this study, we used the Automated Cardiac Diagnosis
Challenge (ACDC) dataset1, consisting of short-axis cardiac
cine-MR images acquired for 150 patients divided into 5
subgroups: normal (NOR), myocardial infarction (MINF),
dilated cardiomyopathy (DCM), hypertrophic cardiomyopa-
thy (HCM), and abnormal right ventricle (ARV), available
through the 2017 MICCAI ACDC challenge [9]. The MRI
images were acquired using two different MRI scanners of
1.5 T and 3.0 T magnetic strength. The series of short
axis slices cover the LV from base to apex such that one
image is captured every 5 mm to 10 mm with a spatial
resolution of 1.37 mm2/pixel to 1.68 mm2/pixel. The
image intensity values are normalized such that the pixel
values lie in between 0 and 1.

B. Segmentation

The segmentation of the MR images is the first step
towards extracting anatomical information for incorporation
into geometric models. In this study, we used our previously
proposed CondenseUNet [8] framework, which substitutes
the concept of both standard convolution and group convo-
lution (G-Conv) with learned group convolution (LG-Conv).
Our network learns the group convolution automatically
during training through a multi-stage scheme. The capa-
bility of our network to learn the group structure allows
multiple groups to re-use the same features via condensed
connectivity. Moreover, the efficient weight-pruning methods
lead to high computational savings without compromising
segmentation accuracy [10].

C. Slice Misalignment Correction

One of the main challenges with cardiac image acquisition
is to account for cardiac motion due to respiration, which
can lead to severe artifacts that manifest themselves by an
overall misalignment of the 2D image slices. Numerous tech-
niques for motion compensation have been proposed for pre-
processing as well as post-processing the cardiac images. We

1https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html

leverage the slice misalignment correction method proposed
by Dangi et al. [11] where we train a modified version of the
U-Net model [12] to segment the cardiac chambers, namely
the – LV blood-pool, LV myocardium and RV blood-pool,
from 2D cardiac MRI images. We identify the LV blood-pool
center, i.e., the centroid of the predicted segmentation mask,
and stack the 2D cardiac MRI slices such that the LV blood-
pool centers from each slice are collinear, hence correcting
for any slice misalignment. This technique results in a set of
correctly aligned image slice stack that faithfully represents
the cardiac geometry and reduces the presence of stair-step
artifacts that appear at the edges of the segmented features.

D. Deformable Registration Framework

Here we use a deep learning registration approach that
employs the VoxelMorph [13] framework, as illustrated in
Fig. 1. We focus on the deformable registration of 3D cardiac
images after slice misalignment correction, as described in
Section II-C. We follow the approach as described in [14],
[15] and a convolutional neural network (CNN), G(f,m)
with parameters θ is used to map the fixed and moving
images to the parameters of the transformation.

During training, a sequence of cardiac 3D MR image
pairs mED,mED+t, ...,mED+NT�1, where NT is the total
number of frames, and mED is the end-diastole image frame,
are passed to the CNN to generate the deformation field
φ. The moving ED frame mED is then warped using the
deformation field φ to obtain the transformed 3D image
mED ◦ φ, which is then used to compute the similarity loss
Lsim(f,mED ◦ φ), with f being the fixed / target image.
We iterate over pairs of fixed-moving images in a training
dataset to find the network parameters that minimize the
similarity loss LSim, which is additionally constrained with
a smoothing loss Lsmooth. Formally the overall objective
function is written as:

L(f,mED ◦ φ) = Lsim(f,mED ◦ φ) + λLsmooth, (1)

where LSim is the mean squared error (MSE), λ is the
regularization parameter, and Lsmooth is a regularization
on the deformation field φ to further enforce smoothness
spatially as given by

Lsmooth =
∑
iεΩ

||∆φ(i)||2, (2)

where ∆ is the Laplacian operator that takes into consider-
ation both global as well as local properties of the objective
function, as inspired by Zhu et al. [16]. We found that our
model performs best with λ = 10�3.

E. Isosurface Mesh Extraction

The surface mesh generation pipeline contains two main
tasks: surface mesh generation and smoothing. The predom-
inant algorithm for isosurface extraction from original 3D
data is marching cubes [17], which produces a triangulation
within each cube to approximate the isosurface by using a
look-up table of edge intersections. For this purpose, we
used the segmentation map of all the frames in a cardiac
cycle generated by our CondenseUNet model. Since the slice
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Fig. 1. Image segmentation and deformable registration pipeline: a) ED frame segmentation and slice misalignment correction; b) deep learning registration
framework. The CNN G(f,m) learns to predict the deformation field and register the moving 3D image to the fixed 3D image to generate the transformed
image using the spatial transformation function.

thickness was large and ranged from 5 mm to 10 mm, we
re-sampled the dataset to achieve a 1 mm consistent slice
thickness. After extracting the isosurface models using the
Lewiner marching cubes [17] algorithm implemented using
the scikit-image library [18] in the Python programming
language, our next task was to remove the surface noise
by applying smoothing operations. In order to smooth the
isosurface meshes, we used the joint smoothing technique in
3D Slicer 4.10.2 [19], with the smoothing factor in the range
of 0.15 to 0.2. This mesh smoothing operation significantly
improves mesh appearance as well as shape, by moving mesh
vertices without modifying topology.

Besides the RV isosurface meshes generated from the indi-
vidual cardiac image frame segmentations following march-
ing cubes and smoothing, which served as ground truth, we
generated three additional sets of meshes by propagating
the isosurface mesh at the ED phase to all the subsequent
cardiac frames using the registration field estimated using the
proposed VoxelMorph registration, as well as two traditional
nonrigid image registration methods: the B-spline free form
deformation (FFD) [20] algorithm and the fast symmetric
force Demon’s algorithm [21], [22], as detailed in Section
II-F.

F. Baseline Comparisons:

The results obtained using the proposed deep learning
registration framework were compared to those obtained
using traditional iterative image registration methods, includ-
ing the FFD [20] algorithm and the fast symmetric force
Demon’s algorithm [22]. The FFD registration method was
implemented in SimpleElastix [23]. The FFD algorithm was
set to use the adaptive stochastic gradient descent method
as the optimizer, MSE as the similarity measure, binding
energy as the regularization function, and was optimized in
500 iterations. The Demon’s algorithm was implemented in
SimpleITK [24]. The standard deviations for the Gaussian
smoothing of the total displacement field was set to 1 and
optimized in 500 iterations. These algorithms are trained
using manually tuned parameters on an Intel(R) Core(TM)
i9-9900K CPU.

III. RESULTS AND DISCUSSION

To evaluate the registration performance of the FFD, De-
mon’s and VoxelMorph methods, the isosurface of the right
ventricle (RV) generated from the segmentation map in the
ED frame is propagated to all the subsequent cardiac frames
using the registration field. We then compare the registration
accuracy by measuring the overlap between the isosurfaces
directly generated by segmenting all cardiac image frames
using our CondenseUNet model [8] (i.e., “silver standard”)
and those propagated by FFD, Demon’s and VoxelMorph
using Dice score and mean absolute distance (MAD).

TABLE I
RV ENDOCARDIUM MEAN (STD-DEV) DICE SCORE (%) AND MEAN

ABSOLUTE DISTANCE (MAD) BETWEEN FFD AND SEGMENTATION

(FFD-SEG), DEMON’S AND SEGMENTATION (DEM-SEG), CNN AND

SEGMENTATION (CNN-SEG), FFD AND CNN (FFD-CNN), AND

DEMON’S AND CNN (DEM-CNN) RESULTS. STATISTICALLY

SIGNIFICANT DIFFERENCES WERE CONFIRMED VIA T-TEST BETWEEN

FFD-SEG AND DEM-SEG, AND FFD-SEG AND CNN-SEG (* P < 0.1
AND ** P < 0.05).

Normal RV Abnormal RV
Methods Dice MAD Dice MAD

FFD-SEG 75.47 4.37 81.72 2.39
(5.71) (1.23) (3.32) (0.62)

Dem-SEG 79.49 3.52 84.54 2.14
(4.77)** (0.93) (4.75)** (0.46)

CNN-SEG 79.51 3.34 83.61 2.44
(4.93)** (0.82)* (4.96)** (0.63)

FFD-CNN 80.15 1.69 87.31 1.03
(5.86) (1.02) (3.45) (0.56)

Dem-CNN 84.91 1.08 90.64 0.78
(5.58) (0.91) (2.55) (0.31)

Table I summarizes the registration performance between
these propagated and “silver standard” isosurfaces, for both
normal and abnormal RV. Fig. 2 illustrates the MAD between
the propagated and segmented isosurfaces for one patient
each with normal and abnormal RV. It can be observed that
the CNN-propagated isosurfaces are closer to the segmented
isosurfaces than the FFD-propagated isosurfaces; they are
comparable to the Demon’s-propagated isosurfaces.

As mentioned in Section II-E, we generate four sets
of isosurface meshes at each frame of the cardiac cycle
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Fig. 2. Mean absolute distance (MAD) between FFD-, Demon’s- and CNN-propagated and segmented (i.e., “silver standard”) masks at all cardiac frames
for patients with normal and abnormal RVs.

Fig. 3. Nearest neighbor (NN) distance between FFD-, Demon’s- and CNN-propagated and segmented (i.e., “silver standard”) isosurface meshes at all
cardiac frames for patients with normal and abnormal RVs.

Fig. 4. Model-to-model distance between the isosurface mesh at end-systole (ES) frame generated from segmentation and propagated using FFD, Demon’s
and CNN-based deformable registration methods (left to right) for a patient with normal RV (top) and a patient with abnormal RV (bottom).

for one patient with a normal RV and one patient with
an abnormal RV. Fig. 3 shows the mean nearest neighbor
(NN) distance between the three sets of the registration-
propagated isosurface meshes and the isosurface meshes
generated directly from the segmented masks at each frame
of the cardiac cycle for both the normal and abnormal RV
subjects. It can be observed that the isosurface meshes are in
close agreement with one another in the subjects with both a
normal and an abnormal RV. Fig. 4 illustrates the model-
to-model distance at the end-systole (ES) frame between
the three registration-propagated isosurface meshes and the

isosurface meshes generated directly from the segmented
masks for both the normal and abnormal RV subjects.

The proposed CNN-based cardiac motion extraction can
be used to generate isosurface meshes at all the cardiac
phases, which are in close agreement with the isosurface
meshes propagated using traditional iterative image registra-
tion algorithms, as well as the meshes generated from the
direct segmentation of the cardiac image frames.

One of the major advantages of the proposed CNN-based
framework over the traditional nonrigid image registration
techniques is the significantly faster computing time. For

3798



example, it takes around 40 seconds to propagate the iso-
surface mesh at the ED frame to the other frames of the
cardiac cycle using a trained VoxelMorph model, compared
to 135 and 160 seconds using the FFD and Demon’s reg-
istration methods, respectively. Similarly, the advantage of
using mesh propagation rather than direct mesh generation
from individual cardiac image frame segmentation is point
correspondence across meshes at different frames, as well as
an overall smoother mesh animation over sequential frames,
since the individual frame segmentation is accompanied
by inherent uncertainty. One area of improvement is to
impose diffeomorphic restrictions to the CNN-based image
registration method in order to prevent mesh tangling and
maintain high mesh quality.

IV. CONCLUSION

This paper presents an unsupervised deep learning-based
deformable image registration technique to generate individ-
ualized anatomically detailed RV models from high resolu-
tion cine cardiac MR images. The cardiac motion estima-
tion was formulated as a 4D image registration problem,
which constrains the smoothness of the estimated motion
fields concurrently with the image registration procedure.
The performance of this 4D registration method for cardiac
applications has been evaluated by qualitative, as well as
quantitative validation using cardiac cine MR images. In
addition, our method is not restricted to only the RV ge-
ometry and can be extended to bi-ventricular models. Thus,
it can be used potentially for improving early diagnosis and
treatment planning of cardiomyopathies. As part of future
work, we will use the deformable endocardial RV models to
characterize the kinematics of the RV endocardium and study
the displacement, velocity and acceleration, as well as shape
changes and use these quantities as potential biomarkers
across various RV-specific cardiac diseases, such as pul-
monary hypertension or other cardiac conditions resulting
from RV malfunction.
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