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Abstract— Electrocardiogram (ECG) is an electrical signal
that helps monitor the physiology of the heart. A complete
ECG record includes 12 leads, each reflecting features from
a different angle of the heart. In recent years, various deep
learning algorithms, especially convolutional neural networks
(CNN), have been applied to detect ECG features. However,
the conventional CNN can only extract the local features
and cannot extract the data correlation across the leads of
ECG. Based on deformable convolution networks (DCN), this
article proposes a new neural network structure (DCNet)
to detect ECG features. The network architecture consists
of four DCN blocks and a classification layer. For the ECG
classification task, in a DCN block, the combination of normal
convolution and deformable convolution with better effect was
testified by the experiments. Based on the feature learning
capability of DCN, the architecture can better extract the
characteristics between leads. Using the public 12-leading
ECG data in CPSC-2018, the diagnostic accuracy of this
architecture is the highest, reaching 86.3%, which is superior
to other common network architectures with good results in
ECG signal classification.

Clinical relevance—In this paper, we proposed an effective
automatic ECG classification model that can reduce medical
staff workload.

I. INTRODUCTION
Disease-related to the heart is one of the significant causes

of death, with approximately 17.9 million people dying
from cardiovascular disease in 2016, making up one-third
of all humankind deaths [1]. Therefore, heart-related diseases
require our attention, and it is significant to detect the disease
through diagnosis and take timely and appropriate treatment.
Non-invasive electrocardiogram (ECG) records can obtain
the physiological condition of the heart. A complete ECG
record consists of 12 leads (I, II, III, aVR, aVL, aVF, V1,
V2, V3, V4, V5, and V6), responding to characteristics of
the heart at different angles [2], which play a significant part
in the detection and prevention of heart problem. However,
ECG signals are characterized by high noise and complexity
[3], which makes it challenging even for cardiologists to
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identify abnormal ECG signals in people with heart problems
[4]. The diagnostic analysis of ECG wave forms through hu-
man observation is extremely dependent on doctors’ knowl-
edge base and experience, which is time-consuming and
challenging to ensure real-time. An effective automatic ECG
diagnosis method can ensure real-time diagnosis and reduce
the workload of medical staff.

Many automated ECG diagnostic methods based on deep
learning have been proposed [5][6][7] in recent years be-
cause of the fast improvement of deep learning techniques,
including Convolutional Neural Network (CNN) [8], Long
Short-Term Memory (LSTM) [9], Encoder-Decoder [10],
have been proposed and have made some progress. Chandra
et al. [11] proposed an encoder-decoder model based on
Kullback-Leibler Divergence to detect anomalies on ECG
signals. Mostayed et al. [12] proposed a 12-Leading ECG
signal classifier that including two Bi-LSTM layers. Liu et
al. [13] proposed a network that combines ECG signal fea-
tures obtained from a Resnet-based 17-layer one-dimensional
CNN with expert features for ECG classification.

Convolutional neural network (CNN) [8], as a model
widely used in the field of deep learning, effectively extracts
features within the proximity interval in space through the
fixed local receptive field, and the sharing of parameters
between different neurons and downsampling decreases the
number of parameters and decreases the difficulty of training
the model [14]. However, conventional CNN has shortcom-
ings in automatic ECG diagnosis. The normal convolution is
limited by its fixed convolution kernel structure, which can
only extract the local features but cannot extract the data
correlation across the leads of ECG.

Deformable convolution breaks up the originally fixed
convolution kernel by introducing displacement weights so
that it can be not limited to a square sampling area [15],
and the sampling points in the convolution kernel can be
shifted based on the displacement weights, which can be
used to adjust the receptive field automatically and extract the
desired features by training the weights [16]. Based on CNN,
the introduction of deformable convolution can better handle
the correlation between leads. The shape of the deformable
convolution’s kernel can be adjusted to select the desired
features according to the actual situation, so as to extract the
characteristics between different leads better.

We design a neural network based on deformable con-
volution according to the characteristics of ECG data. Our
method does not need complex preprocessing of ECG data
and has high classification accuracy.
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Fig. 1. Diagram of the whole structure of DCNet.

II. METHOLOGY

A. Deformable convolution

The convolution kernel of deformable convolution is not
limited to be a fixed square. However, it can change the
convolution shape adaptively to obtain a larger receptive field
and automatically integrate helpful information within it to
better adapt to the characteristics of ECG. The procedure for
calculating the deformable convolution is described in detail
as follows.

First, from the perspective of the normal convolution, a
sliding summation of the data with the convolution kernels
at fixed positions gives a feature map incorporating neigh-
borhood information.

On
i =

∑
∆i∈K

On−1
i+∆i ·W

n
∆i (1)

where, On
i represents the value corresponding to po-

sition i of the nth layer feature map. Wn
∆i repre-

sents the convolution kernel weight corresponding to
the nth layer, for a regular 3×3 convolution K =
{(− 1,−1) , (− 1, 0) , · · · , (0, 1) , (1, 1)}.

The deformable convolution adds an adaptively change-
able position vector j to the original position. Deformation
is achieved by optimizing the parameters with the method of
back-propagation in a similar way to the normal convolution.

On
i = fB(

∑
∆i∈K

On−1
i+∆i ·W

n
∆i) (2)

B. Network architecture design

We arrange 12 leads of ECG data in parallel rows as
the network’s input and use one-dimensional convolution to
extract the local feature of the ECG signal within single
leads. Since the correlation between leads is independent
of the order of the leads, the normal convolution cannot
handle the correlation between leads well and can only
extract the local features within a single lead. Therefore,
we use adaptive respective field adjustment, a prominent
feature of deformable convolution, to automatically select
useful local features. Furthermore, the sampling points of
its convolution kernel can adjust the position of the samples
with trainable displacement weights, enabling intra-lead and

inter-lead sampling to extract correlation between leads and
periodic characteristics of the ECG signal.

Our proposed DCNet consists of four DCN blocks and a
classification layer, and each DCN block contains two one-
dimensional convolutional layers and one deformable convo-
lutional layer, shown in Fig. 1. We use ReLU as an activation
function to add non-linearity to the model and append it
after each convolutional layer or deformable convolutional
layer. The first DCN block takes the 12-leading ECG data
as the input of this module, and the remaining DCN blocks
take the output of the previous block as the current blocks’
input. In each DCN block, a feature map is obtained through
two layers of 1×3 convolution and 1×4 maximum pooling,
which is then inputted to the deformable convolution layer.
The DCN block is used four times to extract the ECG signal
feature, and Global Average Pooling (GAP) is performed
in the classification layer and input to a Dense layer with
softmax function. Finally, the classification possibilities of
ECG types are the output. The specific network structure and
parameters are shown in Table I, ”Convolution” denotes the
normal convolution layer, ”DConv” denotes the deformable
convolution layer.

C. Implementation Details

We use the Pytorch 1.4.0 framework to implementing our
code and use a Stochastic Gradient Descent (SGD) optimizer
with a momentum of 0.5 and choose 0.0001 as the initial
learning rate. We trained all the models for 100 epochs with
a batch size is eight and chose the highest accuracy model on
the validation set within 100 epochs. The server we used for
training has an Intel i9-9900K CPU, 32GB memory, and an
Nvidia RTX 2080 GPU with 8GB RAM and runs an Ubuntu
18.04 system with GPU driver version 418.67.

III. EXPERIMENTAL VALIDATION

A. Dataset and Preprocessing

We used the publicly available dataset from China Phys-
iological Signal Challenge 2018 (CPSC-2018) [13] to train,
validate and test the effectiveness of our model. The dataset
was obtained from 11 different hospitals, some of which were
used for competition scoring and therefore not available to
the public. In the publicly available data, the sampling rate
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TABLE I
THE DETAILS OF THE DCNET

Input Layer Details Intput

- 12-leading ECG data

Layer Details Output Layer Details Output

DCN block 1

[32×1×3 Convolution, stride=1]+Relu 12×7500×32

DCN block 2

[64×1×3 Convolution, stride=1]+Relu 12×1875×64
[32×1×3 Convolution, stride=1]+Relu 12×7500×32 [64×1×3 Convolution, stride=1]+Relu 12×1875×64

[1×4 1D Max-pooling] 12×1875×32 [1×4 1D Max-pooling] 12×469×64
[32×3×3 DConvolution, stride=1]+Relu 12×1875×32 [64×3×3 DConv, stride=1]+Relu 12×469×64

Layer Details Output Layer Details Output

DCN block 3

[128×1×3 Convolution, stride=1]+Relu 12×469×128

DCN block 4

[256×1×3 Convolution, stride=1]+Relu 12×118×256
[128×1×3 Convolution, stride=1]+Relu 12×469×128 [256×1×3 Convolution, stride=1]+Relu 12×118×256

[1×4 1D Max-pooling] 12×118×128 [1×4 1D Max-pooling] 12×30×256
[128×3×3 DConv, stride=1]+Relu 12×118×128 [256×3×3 DConv, stride=1]+Relu 12×30×256

Classification
Layer Details Output

Global Average Pooling Classification possibilities of different ECG typesDense+Softmax

of the signal is 500 Hz, each record containing 12 leads, and
the duration of the records is inconsistent, with the shortest
record being 6 seconds and the longest record being 144
seconds. There are 9 different categories in total, which are
Normal, AF, I-AVB, LBBB, RBBB, PAC, PVC, STD, and
STE. We ignored a small portion of the data that were too
exceptional and downsampled the remaining data to 250 Hz
to reduce the data volume and increase training efficiency.
To adapt to the characteristics of DCN, we also adjusted the
sampling time of data to be 30 seconds equally by repetitive
padding and finally obtained 5850 ECG data with the length
of 7500. The ECG data were randomly divided into 3510
data as the training set to adjust parameters of the model,
1170 data as the validation set to make an initial assessment
of the model’s capabilities which can also monitor the sample
to avoid overfitting, and 1170 data as the test set which does
not participate in the training model parameters to assess the
generalization capability of the final model. The order of the
input ECG data is random when entering the network.

B. Evaluation Metrics

We used accuracy as an evaluation metric to judge the
effectiveness of our network, and the accuracy was calculated
as shown in Eq (3).

Accurary =
TP

TP +
∑8

i=1 FNi

(3)

where TP represents the amount of true-positive samples,
and FN represents the quantity of false-negative samples.

C. Comparison of different combinations
TABLE II

COMPARISON OF DIFFERENT COMBINATIONS

Accuracy Number of DCN block

3 4 5

Number of
Convolution Layer
in each DCN block

1 0.765 0.774 0.790
2 0.780 0.863 0.829
3 0.829 0.799 0.798

We have tried several different combinations of normal
and deformable convolutional networks, and experimentally

obtained one that works well for the ECG classification task,
which we call the DCN block. DCN block consists of two
parts:

• 1) Several normal convolution layers for extracting local
features within leads.

• 2) One deformable convolution layer for information
integration and cross-lead information extraction.

We experimented with different numbers of DCN blocks
stacked together and the effect of the number of normal
convolution layers contained in each DCN block on the final
network classification results.

Fig. 2. Diagnostic accuracy for different combination.

From Fig. 2, we can see that the proposed combination
method converges fast, which converges and stabilizes at
about 50 epochs. We chose the highest accuracy among
100 epochs as the final accuracy result of this combination
method and recorded it in Table II. From Table II, it can
be observed that the combination method with a stack of
four DCN blocks and each DCN block containing two
normal convolution layers has the best performance of 86.3%
accuracy, so we use this combination method in our DCNet.
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TABLE III
COMPARISON WITH DCNET AND OTHER COMMON NETWORK STRUCTURES

Data Source CPSC-2018

Method LSTM[9] VGG16[17] Resnet18[18] Resnet50[18] Conventional
CNN

DCNet

Accuracy
for Different

ECG Categories
(amount of data)

Normal (856) 0.725 0.765 0.698 0.779 0.658 0.781
AF (910) 0.905 0.899 0.854 0.918 0.880 0.945

I-AVB (650) 0.774 0.849 0.877 0.802 0.764 0.874
LBBB (169) 0.903 0.871 0.710 0.613 0.871 0.886

RBBB (1444) 0.925 0.941 0.900 0.908 0.929 0.942
PAC (429) 0.183 0.244 0.451 0.402 0.488 0.716
PVC (477) 0.718 0.824 0.824 0.682 0.871 0.937
STD (754) 0.838 0.853 0.853 0.735 0.801 0.774
STE (161) 0.071 0.643 0.429 0.429 0.786 0.667

Weighted average accuracy 0.773 0.813 0.798 0.779 0.801 0.863

* The numbers in gray in brackets are the total number of ECG recordings for each category.
* The accuracy in the table are calculated based on the recordings in test set.

D. Comparative experiment

We compared our network with other common network
structures that work better in ECG signal classification,
namely Resnet [18], VGG [17], LSTM [9], and networks
with the same number of layers as our network but each layer
is composed of a 3×3 normal convolution. All network struc-
tures were compared on the same CPSC-2018 dataset using
the same dataset preprocessing and segmentation methods.

In Table III, we compared the performance of DCNet with
five counterparts using the accuracy for nine ECG categories.
From the table, the proposed model has the highest weighted
average accuracy (0.863) among six networks, surpassing
the second-ranked method (VGG16) by 0.05. Compared with
Conventional CNN and Resnet18, 0.062 and 0.065 accuracy
improvements are obtained by the proposed method, respec-
tively. In addition, even more gains (0.084 and 0.09) are
obtained compared with the other two methods.

Furthermore, the accuracy of DCNet exceeds those of the
other five methods in Normal, AF, RBBB, PAC, and PVC.
Specifically, for the category of PVC, the proposed method
gains 0.219 and 0.255 increases compared with LSTM and
Resnet50, respectively. In addition, for the category of PAC,
LSTM is surpassed by the proposed method by a large gap
(0.533). While the existing methods already perform well in
the category of RBBB, the proposed method also obtains an
increase compared with these methods.

IV. CONCLUSION

We propose a network combining deformable convolu-
tion and normal convolution based on ECG features. This
structure obtains better classification results on the CPSC-
2018 dataset and has an advantage in classification accuracy
compared with other networks. This shows that our proposed
network can effectively select and integrate ECG features and
does not require much preprocessing of the input ECG signal,
and can achieve the goal of end-to-end ECG automatic
diagnosis. In clinical applications, it can provide a reference
for doctors to determine the type of ECG and reduce the
workload of medical staff. In the following work, we will set
about training and validating the effectiveness of our model
on more ECG datasets.
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