

Abstract— Electrocardiogram (ECG) is one of the fundamental

markers to detect different cardiovascular diseases (CVDs).

Owing to the widespread availability of ECG sensors (single

lead) as well as smartwatches with ECG recording capability,

ECG classification using wearable devices to detect different

CVDs has become a basic requirement for a smart healthcare

ecosystem. In this paper, we propose a novel method of model

compression with robust detection capability for CVDs from

ECG signals such that the sophisticated and effective baseline

deep neural network model can be optimized for the resource

constrained micro-controller platform suitable for wearable

devices while minimizing the performance loss. We employ

knowledge distillation-based model compression approach

where the baseline (teacher) deep neural network model is

compressed to a TinyML (student) model using piecewise linear

approximation. Our proposed ECG TinyML has achieved ~156x

compression factor to suit to the requirement of 100KB memory

availability for model deployment on wearable devices. The

proposed model requires ~5782 times (estimated) less

computational load than state-of-the-art residual neural

network (ResNet) model with negligible performance loss (less

than 1% loss in test accuracy, test sensitivity, test precision and

test F1-score). We further feel that the small footprint model size

of ECG TinyML (62.3 KB) can be suitably deployed in

implantable devices including implantable loop recorder (ILR).

I. INTRODUCTION

With the advent of off-the-shelf sensor technologies
coupled with advancement and rapid developments of
Artificial Intelligence (AI) techniques, Cardiovascular Disease
(CVD) detection using single lead ECG is becoming
increasingly popular. Proposed techniques are proven to be
helpful in diagnosing CVDs including transient infrequently
arrhythmias especially Atrial Fibrillation (AF) and rhythm
monitoring. Portable ECG devices currently offer an efficient
screening option for AF; generating comparable performance
to 24 hours Holter monitoring [1]. A study using Kardia band
(single lead ECG) demonstrated moderate diagnostic accuracy
when compared to 12-lead ECG analysis. The study also
concluded that combining the automated device diagnosis with
Electrophysiologists’ (EP) interpretation of unclassified
tracings yielded improved accuracy. Future improvements in
automated algorithms were required with physicians’
involvement when exploring the utility of these devices [2].
Such diagnostic inference on single lead ECG often requires
sophisticated deep learning (DL) models. We find two critical
problems of running such DL based ECG diagnostics natively
on the typical resource-constrained wearables: 1. Depending
on the number of layers, size of a DL model may become too

high. In order to be wearable ready, the model size requires to
be as small as possible (preferably sub-100 KB) 2. The
associated battery drain which also in turn demands for smaller
and less compute heavy models. In this paper, we propose a
piecewise linear approximation of a ResNet [3] based ECG
diagnostic inferencing model (ECG TinyML) that takes 156
times less memory than the original Resnet model. The
proposed ECG TinyML is 5782 times less computationally
intensive compared to the baseline ResNet model, with almost
no compromise in classification performance. The final
reduced model takes less than 70 KB of memory, making it
suitable for embedding into cardiac implantable devices like
ILR.

II. ON THE PROBLEM OF ECG CLASSIFICATION MODEL FOR

WEARABLE DEVICES

A. The Application Landscape

As illustrated in [4], cardiac rhythm monitoring and

management devices have had a large proliferation over the

past decade, and hence the on-device detection of cardiac

rhythm anomalies is an important problem to solve. Further,

[5] provides overview of methods and challenges of analyzing

single lead ECG (e.g. KardiaMobile [6]) for clinical outcome,

which proves that the problem is non-trivial. The problem is

further amplified if we need to perform the detection on a

resource constrained device like a wearable or an implantable

device that have limited memory and battery power. [4]

provides an analysis different cardiac rhythm management

devices and associated therapies in Australian market.

Though 75% of those devices are traditional pace makers,

other devices capable of defibrillation and cardiac

resynchronization have found their places in the list.

B. The Hardware Landscape

ILRs and wearable devices are generally composed of tiny
microcontroller units (MCU) and specific sensors [7]. The
block diagram of a typical hardware system is shown in Fig. 1.
It consists of a main MCU which reads data from connected
sensors. A separate MCU or System-On-Chip (SoC) does the
communication with external world using Bluetooth Low
Energy (BLE) or other low energy communication protocols.
Such a hardware setup will have both costlier and faster
volatile memory (RAM) and slower but cheaper non-volatile
memory such as an external flash.

The main MCU in these devices is often severely resource
constrained. They typically range from low-end 32-bit ARM

Resource Constrained CVD Classification Using Single Lead ECG

On Wearable and Implantable Devices

Arijit Ukil1, Ishan Sahu1, Angshul Majumdar2, Sai Chander Racha1, Gitesh Kulkarni1, Anirban Dutta

Choudhury1, Sundeep Khandelwal1, Avik Ghose1, Arpan Pal1

1TATA Consultancy Services, India, 2 Indraprastha Institute of Information Technology, Delhi, India

e-mail1: (arijit.ukil, ishan.sahu, sai.racha, gitesh.k, anirban.duttachoudhury, sundeep.khandelwal,

avik.ghose, arpan.pal)@tcs.com; email2: angshul@iiitd.ac.in

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 886

Cortex M0 to Cortex M7 with limited flash memory (from
32KB to 1MB) and RAM sizes ranging from 10KB to 256KB.
Even if an additional flash memory is externally connected to
the MCU to increase total memory size, such connection
increases power consumption by many folds due to the
increased I/O, thereby leading to reduced battery life. Also,
slower memory such as flash demands more energy [8]. It was
shown in [9] that 1mJ/KB is the average energy consumed by
the whole system of the wearable in a sequential data write to
local flash indicating a directly proportional (i.e. linear)
relation between storage size and energy consumption. In a
typical wearable with single sensor, the wearable storage
accounts for almost 1/3rd energy [9]. Memory may be put on
the same die as the core to reduce power consumption, but
such on-die memory is pricier and hence difficult to integrate
in low-end wearables.

Figure 1. Single lead ECG analyis on MCU

In premium wearables and loop recorder that can afford
higher amount of memory (Flash and RAM) in SoC, battery
consumption still dominates the design decisions. This is
because battery consumption gets greatly affected by the
residence of the code (flash or RAM). For example, a code
executed from the flash memory consumes 275µA/MHz as
compared to when executed from the RAM (150µA/MHz)
[10]. Communication takes up a significant energy. It is seen
that just by sending feature extracts instead of sending raw data
at 100Hz sampling of sensor, close to 20% of total energy was
saved [11]. Memory as well as the energy cost of bigger
models is one more important factor. All these factors above
indicate that it is imperative to reduce the size of DL models
to fit in the limited memory available in these devices and
adhere to the power consumption requirement so that they can
qualify as medical grade device. Authors in [12], provide the
hardware landscape of such implantable or wearable devices
and their functionality. The paper does not provide the
hardware specifications for the devices, however, considering
that they are battery powered and long running devices, we can
consider the specifications of a low-power microcontroller
platform to exist within the device.

C. The Proposed Solution Overview

Let us consider that certain pre-trained DNN model 𝒟
achieves performance metric (say, in terms of accuracy, which
can also be measured in terms of sensitivity, F1-score, etc.) 𝜌
and the trained model size is ℳKB for an ECG classification
task ℰ. Let us further consider the following: target micro-
controller of wearable device is having memory budget
ℳ𝑐𝑜𝑚𝑝𝑟KB and the allowed performance penalty is 𝛿, 𝛿 ≪ 1.
Let the performance metric of the micro-controller deployed

trained model be 𝜌′ and
𝜌−𝜌𝑐𝑜𝑚𝑝𝑟

𝜌
≤ 𝛿.

In a likely scenario, we get ℳ ≫ ℳ𝑐𝑜𝑚𝑝𝑟 . In order to
achieve a deployable trained model, we need to have at least

ℳ

ℳ𝑐𝑜𝑚𝑝𝑟 =𝛼 compression gain while
𝜌−𝜌𝑐𝑜𝑚𝑝𝑟

𝜌
≤ 𝛿. Classically,

such model compression need can be attempted using
quantization and pruning approaches [7]. However, we find
that typical wearable micro-controller memory budget is less
than 100KB (ℳ𝑐𝑜𝑚𝑝𝑟 < 100) and a novel model
compression approach is required. ECG TinyML is such a
novel model compression method that fulfills the criteria for
ECG classification at wearable devices. Additionally, and
importantly, we need to significantly reduce the run time or
equivalently computational load (less computational load
results in less power consumption) of the deployable
compressed model, which can be estimated from the number
of floating point operations (FLOPs) of the base line model

(ℱ) and that of compressed model (ℱ𝑐𝑜𝑚𝑝𝑟), i.e.
ℱ𝑐𝑜𝑚𝑝𝑟

ℱ
< 𝜃,

where, 𝜃 ≪ 1.

III. TINYML FOR ECG CLASSIFICATION- PROPOSED MODEL

COMPRESSION ALGORITHM

Larger and complex DNN models are the current state-of-

the-art for solving different classification problems, including

ECG classification tasks [3]. Such networks often consist of

many million parameters and the memory requirement is too

demanding which might not be supported by tiny edge

devices for in-situ inference purpose. In order to reduce the

complexity of the baseline DNNs, model quantization and

pruning are the widely-used approach [11, 13].

A. Quantization and Pruning Based Deep Network

Compression- Classical Approach

Conventionally, pruning and quantization are the widely-
used model compression techniques. Pruning helps in
removing unnecessary connections of the weight tensor of the
baseline DNN to reduce the model storage memory size.
Quantization on the other hand is reducing the precision of the
datatype into lower bits such that the consumption of memory
on the device is less compared to the original model. In a
typical deployment scenario, baseline model is pruned using
TensorFlow (TF) model optimization and quantization is
done to integer data type precision to reduce the memory and
computational overload [11, 16]. We observe that pruning and
quantization methods are not sufficient to reduce the baseline
DNN for MCU-based ECG analytics.

B. Piecewise Linear Approximation for Deep Network

Compression as ECG TinyML- Our Approach

In this paper, we employ a novel Knowledge Distillation

(KD) method to uniquely compress a baseline DNN model to

achieve significant compress gain while maintaining similar

performance metric (in terms of test accuracy, test sensitivity,

test precision, test F1-score metrics) [13]. KD approach

enables effective transfer of the knowledge from a large pre-

trained DNN model (teacher model) to a compact model

(student model). Contrary to conventional KD method, where

homogeneity in the teacher-student architecture is maintained

(i.e. student model is smaller DNN), we propose

heterogeneity in the KD process, where student model

architecture is a shallow machine learning algorithm.

887

Let us consider a given ECG dataset which consists of

signals 𝒮, and their associate label vector ℒ. Let ℊ(.) denote

all the operations performed till the penultimate layer, i.e, the

layer just before the last softmax layer of the trained DNN

model. Then we have, 𝜌𝑜𝑢𝑡 = ℊ(𝒮), and predicted label ℒ′=

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜌𝑜𝑢𝑡).

We try to estimate ℊ(.) and then use the last layer of the

trained DNN to generate the class labels. This gives us an

alternative to directly learning the relationship between the

input signal and hard labels, which is a more difficult

problem. As the relationships learnt by DNNs are usually

complex in nature, we take a piecewise approach: divide the

input space into smaller pieces and then approximate the input

𝒮 – output 𝜌𝑜𝑢𝑡 relationships for each of them using separate

linear models. The method is described below.

Algorithm: Piecewise linear approximation for baseline DNN

model Compression- ECG TinyML (proposed approach)

Producing the compressed model from baseline DNN:

Input: Training ECG data- 𝒮, trained DNN model- 𝒟.

Output: Compressed model suitable for deployment on resource

constrained devices: Π𝐸𝐶𝐺 𝑇𝑖𝑛𝑦𝑀𝐿.

Procedure:

Step 1: We cluster (using k-means algorithm) 𝒮 into 𝑘 distinct

groups and learn the set of cluster centroids 𝒞. These clusters

provide us the pieces of the input space of 𝒮. The optimal number

of clusters for this dataset = 3. We explore number of clusters in

the range 1 to 5. Based on the 5-fold cross validation performance

over the training data, we select the optimal number of pieces in

which the input space is divided.

Step 2: The set of pairs {(𝒮, 𝜌𝑜𝑢𝑡)}, is generated using 𝒟, where

𝜌𝑜𝑢𝑡 = ℊ(𝒮).

Step 3: These pairs, {(𝒮, 𝜌𝑜𝑢𝑡)}, are associated with the

corresponding cluster ℛ of 𝒮.

Step 4: For each element of ℛ, we learn a new linear

approximation model by solving the linear least squares problem

with regularization.

𝑎𝑟𝑔𝑚𝑖𝑛𝑊𝑘

 ‖𝜌
𝑘,𝑜𝑢𝑡

− 𝑊𝑘𝒮𝑘‖ + 𝜆‖𝒮𝑘‖

𝑊𝑘
𝑇 = (𝒮𝑘𝒮𝑘

𝑇
+ 𝜆𝐼)−1𝒮𝑘𝜌

𝑘,𝑜𝑢𝑡
𝑇

where, 𝑊𝑘 represents the weights of the different linear models

and λ is the regularization parameter.

Step 5: 𝑘, the number of clusters or pieces is tuned by searching

over different values to achieve closest approximation of DNN.

Step 6: We get the compressed model, Π* which consists of

cluster centroids, set of linear models for each of the clusters and

the last layer weights of the DNN model (𝒟).

Step 7: Π* is further quantized to Π𝐸𝐶𝐺 𝑇𝑖𝑛𝑦𝑀𝐿 for ensuring model

compactness (Please refer Section IIIA).

ECG signal classification using 𝚷𝑬𝑪𝑮 𝑻𝒊𝒏𝒚𝑴𝑳:

Input: Test ECG signal: 𝒮𝑡𝑒𝑠𝑡

Output: Label denoting health condition

Procedure:

Step 1: First the cluster membership of 𝒮𝑡𝑒𝑠𝑡 is ascertained by

determining the nearest cluster centroid present in Π𝐸𝐶𝐺 𝑇𝑖𝑛𝑦𝑀𝐿 .
Step 2: Using the linear regression model associated with the

identified cluster, 𝜌𝑜𝑢𝑡
′

 is computed.

Step 3: Finally, after multiplication of 𝜌𝑜𝑢𝑡
′ with the last layer

weights, we get the predicted health condition.

IV. EXPERIMENTAL RESULTS

In order to establish the efficacy of our proposed method,

we experiment with publicly available ECG dataset [14][15]

and use state-of-the-art classification model ResNet [3].

A. Dataset Description

ECG dataset is extracted from the BIDMC Congestive

Heart Failure Database [15]. The original data is sampled at

250 Hz and pre-processed in two steps: (1) extract each

heartbeat, (2) make each heartbeat equal length using

interpolation with time series length equals to 140 time steps

[14]. There are 5 different classes: Normal, R-on-T Premature

Ventricular Contraction, Supraventricular Premature,

Premature Ventricular Contraction, and Unclassifiable Beat.

The number of training and testing instances are 500 and 4500

respectively. We have used 5-fold cross-validation on training

data (500 instances) is used to tune the parameters. Since, it is

5-fold we have 80% train and 20% validation for each

iteration.

B. Experimental Procedure

The ResNet based DNN model is considered as the baseline

model for our ECG analytics application, which is a state-of-

the-art algorithm for time series classification tasks including

ECG classification [3]. The baseline model is trained on a

GPU (Nvidia Quadro P5000 GPU with 16 GB GPU RAM)

using the given training ECG data to get the pre-trained

baseline DNN model 𝓓. We further compute the performance

metrics of the baseline DNN model over the testing dataset.

The pre-trained model is 9.71 MB (ℳ) in size. The MCU

(e.g. STM 32 MCU) for edge analytics demands for sub-100

KB (ℳ𝑐𝑜𝑚𝑝𝑟) model memory size. Thus, the model

compression gain 𝛼 =
ℳ

ℳ𝑐𝑜𝑚𝑝𝑟 =
9710

100
 = 97.1 and we set the

allowed performance penalty is 𝛿 = 1%.
In our method, there are two control parameters: k, the

number of pieces or clusters and λ, regularization parameter

for each of the respective linear models. In order to find the

optimal model parameter, we tune them using 5-fold cross

validation on the training data itself. For k, we consider the

range 1 to 5. And for λ, search was done over the values

ranging from 0.01 to 1000. The resultant compressed model

is then deployed on the microcontroller and tested using the

test data.

B. Results

The classification inference performance of our solution
along with the comparison with baseline DNN model is
detailed in Table II. We measure the weighted performance
metrics including test accuracy, test sensitivity, test precision
and test F1-score for the comparative study. In Table I, we
depict the limitation of pruning and quantization approach,
where the compressed model size is achieved to 801 KB,
which does not fit for sub-100 KB model footprint. The typical
model construction workflow for edge deployment (where we
need to deploy Tensorflow (TF) Lite model [17]) is as follows:
Baseline TF model → TF Lite model → Compressed TF Lite
model [16]. The model deployment workflow for ECG
TinyML is as flows: Baseline TF model → Piecewise Linear
Approximation (PLA) model → PLA with quantization in TF

888

Lite format. We have applied integer with float fallback with
INT8 quantization.

TABLE I. MODEL COMPRESSION BY CLASSICAL PRUNING AND

QUANTIZATION APPROACHES

Method
Method Performance

Test

accuracy

Test

sensitivity

Test

precision

Test F1-

score

Model

size

Baseline

DNN
(ResNet)

[28]

0.931 0.931 0.924 0.926
9.71
MB

Baseline

model TF
Lite format

0.931 0.931 0.924 0.926
3.13

MB

Pruned and

quantized
TF Lite

0.929 0.931 0.927 0.928
0.801

MB

TABLE II. MODEL COMPRESSION BY OUR PROPOSED ECG TINYML

METHOD

Method
Method Performance

Test

accuracy

Test

sensitivity

Test

precision

Test F1-

score

Model

size

Baseline

ResNet [3]

0.931 0.931 0.924 0.926
9.71

MB

Piecewise
Linear

Approximati

on (PLA)

0.938 0.938 0.926 0.929
0.443

MB

PLA-

quantized

TF Lite

(ECG

TinyML)

0.937 0.937 0.925 0.928
0.062

MB

We like to mention that the number of parameters of

baseline ResNet model is ResNet 804,169, whereas there are

55710 parameters in our proposed compressed PLA model.

Another important aspect of this experimental study is to

demonstrate the low computational load in terms of FLOPs in

ECG TinyML than the baseline ResNet model as shown in

Table III. We also notice the unchanged computational load

of pruned and quantized model (pruning and quantization

algorithms are designed to reduce the model memory size, not

to reduce the computational load like the number of matrix

multiplications in DNN models).

TABLE III. COMPUTIONAL LOAD (IN TERMS OF FLOPS) COMPARISON

 Method FLOPs

Baseline DNN (ResNet) [28] 222908190

Baseline model pruned and
quantized TF Lite

222908190

PLA- quantized TF Lite

(ECG TinyML)
38554

C. Result Summary and Observation

Our experimental results reveal that the proposed ECG

TinyML demonstrates high model compression gain (𝛼 =
156), insignificant performance penalty (𝛿 ≅ 0) and

substantially less computational load for effective run time

execution (𝜃 = 1.72 × 10−4) and consequently, higher

energy saving. Hence, ECG TinyML is well-suited for edge

deployment. Subsequently, the very tiny model foot print of

62.3 KB and low FLOPs of 38554 pave us to explore the

feasibility of ECG TinyML deployment in cardiac

implantable devices like ILR.

V. CONCLUSION

The primary objective of ECG tinyML is to establish the

feasibility of a transformation process for deploying

sophisticated, complex and highly computationally intensive

DNNs to the microcontroller based wearable ECG devices

under the constraints of tinyML scenario. We intend that ECG

tinyML will pave path towards automated detection of CVDs

and act as a pivotal component for building early warning

systems. We envisage our future work to encompass larger set

of ECG classification tasks including different arrhythmias

for edge deployment as well as to explore the likelihood of

deploying in array of implantable devices including ILRs.

REFERENCES

[1] S. Ramkumar, N. Nerlekar, D. D’Souza D, et al. "Atrial Fibrillation

Detection Using Single Lead Portable Electrocardiographic

Monitoring: A Systematic Review and Meta-Analysis," BMJ Open

2018.

[2] K. Rajakariar, et al. "Accuracy of A Smartwatch Based Single-Lead

Electrocardiogram Device in Detection of Atrial Fibrillation," Heart

2020.

[3] A. Ukil, S. Bandyopadhyay, and A. Pal, “Dyreg-fresnet: Unsupervised

feature space amplified dynamic regularized residual network for time
series classification,” IEEE IJCNN, 2019.

[4] I. Stevenson, A. Voskoboinik, “Cardiac Rhythm Management

Devices,” Australian Journal of General Practice, 2018.

[5] S.M. Mathews, C. Kambhamettu, and K.E. Barner. "A Novel

Application of Deep Learning for Single-Lead ECG Classification,"
Computers in Biology and Medicine, 2018.

[6] https://clinicians.alivecor.com/our-devices/.

[7] A. Srinivasulu and N. Sriraam, "An Engineering Perspective of

External Cardiac Loop Recorder: A Systematic Review," Journal of
Medical Engineering, 2016.

[8] H. Kim, N. Agrawal, C. Ungureanu, "Revisiting Storage for

Smartphones," ACM Transactions on Storage, Dec 2012.

[9] J. Huang, A. Badam, R.Chandra, and Edmund B. Nightingale,

"WearDrive: Fast and Energy-Efficient Storage for Wearables," Usenix
Annual Technical Conference, 2015.

[10] L. Yankov, "Multiprotocol Bluetooth® low energy/2.4 GHz RF

System on Chip, Product Specification v3.1, and Power and execution

simulator for wearable devices," nRF51822.

[11] F. Grützmacher, et al. "Towards Energy Efficient Sensor Nodes for

Online Activity Recognition," ICPEC, 2018.

[12] URL:https://www.researchandmarkets.com/reports/4871577/cardiac-

rhythm-management-crm-devices-

and?utm_source=dynamic&utm_medium=BW&utm_code=tz96jt&ut

m_campaign=1331634+-
+Global+Cardiac+Rhythm+Management+(CRM)+Devices+and+Equi

pment+Market+Report+2020&utm_exec=chdo54bwd last visited on

31st March 2021.

[13] I. Sahu, A. Pal, A. Ukil, and A. Majumdar “Compressing Deep Neural

Network: A Black-Box System Identification Approach” International
Joint Conference on Neural Networks (IJCNN), 2021.

[14] Y. Chen, et al. “A General Framework for Never-Ending Learning from

Time Series Streams,” DMKD, pp. 1622-1664, 2014.

[15] A.L. Goldberger AL, et al. “Physiobank, Physiotoolkit, and Physionet:

Components of A New Research Resource for Complex Physiologic

Signals,” Circulation, 2000.

[16] https://www.tensorflow.org/model_optimization.
[17] https://www.tensorflow.org/lite.

889

