
 

 

 

 

Abstract— Electrocardiogram (ECG) is one of the fundamental 

markers to detect different cardiovascular diseases (CVDs). 

Owing to the widespread availability of ECG sensors (single 

lead) as well as smartwatches with ECG recording capability, 

ECG classification using wearable devices to detect different 

CVDs has become a basic requirement for a smart healthcare 

ecosystem. In this paper, we propose a novel method of model 

compression with robust detection capability for CVDs from 

ECG signals such that the sophisticated and effective baseline 

deep neural network model can be optimized for the resource 

constrained micro-controller platform suitable for wearable 

devices while minimizing the performance loss. We employ 

knowledge distillation-based model compression approach 

where the baseline (teacher) deep neural network model is 

compressed to a TinyML (student) model using piecewise linear 

approximation. Our proposed ECG TinyML has achieved ~156x 

compression factor to suit to the requirement of 100KB memory 

availability for model deployment on wearable devices. The 

proposed model requires ~5782 times (estimated) less 

computational load than state-of-the-art residual neural 

network (ResNet) model with negligible performance loss (less 

than 1% loss in test accuracy, test sensitivity, test precision and 

test F1-score). We further feel that the small footprint model size 

of ECG TinyML (62.3 KB) can be suitably deployed in 

implantable devices including implantable loop recorder (ILR).  

I. INTRODUCTION 

With the advent of off-the-shelf sensor technologies 
coupled with advancement and rapid developments of 
Artificial Intelligence (AI) techniques, Cardiovascular Disease 
(CVD) detection using single lead ECG is becoming 
increasingly popular. Proposed techniques are proven to be 
helpful in diagnosing CVDs including transient infrequently 
arrhythmias especially Atrial Fibrillation (AF) and rhythm 
monitoring.  Portable ECG devices currently offer an efficient 
screening option for AF; generating comparable performance 
to 24 hours Holter monitoring [1]. A study using Kardia band 
(single lead ECG) demonstrated moderate diagnostic accuracy 
when compared to 12-lead ECG analysis. The study also 
concluded that combining the automated device diagnosis with 
Electrophysiologists’ (EP) interpretation of unclassified 
tracings yielded improved accuracy. Future improvements in 
automated algorithms were required with physicians’ 
involvement when exploring the utility of these devices [2]. 
Such diagnostic inference on single lead ECG often requires 
sophisticated deep learning (DL) models. We find two critical 
problems of running such DL based ECG diagnostics natively 
on the typical resource-constrained wearables: 1. Depending 
on the number of layers, size of a DL model may become too 

high. In order to be wearable ready, the model size requires to 
be as small as possible (preferably sub-100 KB) 2. The 
associated battery drain which also in turn demands for smaller 
and less compute heavy models. In this paper, we propose a 
piecewise linear approximation of a ResNet [3] based ECG 
diagnostic inferencing model (ECG TinyML) that takes 156 
times less memory than the original Resnet model. The 
proposed ECG TinyML is 5782 times less computationally 
intensive compared to the baseline ResNet model, with almost 
no compromise in classification performance. The final 
reduced model takes less than 70 KB of memory, making it 
suitable for embedding into cardiac implantable devices like 
ILR. 

II. ON THE PROBLEM OF ECG CLASSIFICATION MODEL FOR 

WEARABLE DEVICES 

A. The Application Landscape 

As illustrated in [4], cardiac rhythm monitoring and 

management devices have had a large proliferation over the 

past decade, and hence the on-device detection of cardiac 

rhythm anomalies is an important problem to solve. Further, 

[5] provides overview of methods and challenges of analyzing 

single lead ECG (e.g. KardiaMobile [6]) for clinical outcome, 

which proves that the problem is non-trivial. The problem is 

further amplified if we need to perform the detection on a 

resource constrained device like a wearable or an implantable 

device that have limited memory and battery power. [4] 

provides an analysis different cardiac rhythm management 

devices and associated therapies in Australian market. 

Though 75% of those devices are traditional pace makers, 

other devices capable of defibrillation and cardiac 

resynchronization have found their places in the list. 

B. The Hardware Landscape 

ILRs and wearable devices are generally composed of tiny 
microcontroller units (MCU) and specific sensors [7]. The 
block diagram of a typical hardware system is shown in Fig. 1. 
It consists of a main MCU which reads data from connected 
sensors. A separate MCU or System-On-Chip (SoC) does the 
communication with external world using Bluetooth Low 
Energy (BLE) or other low energy communication protocols.  
Such a hardware setup will have both costlier and faster 
volatile memory (RAM) and slower but cheaper non-volatile 
memory such as an external flash. 

The main MCU in these devices is often severely resource 
constrained. They typically range from low-end 32-bit ARM 
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Cortex M0 to Cortex M7 with limited flash memory (from 
32KB to 1MB) and RAM sizes ranging from 10KB to 256KB. 
Even if an additional flash memory is externally connected to 
the MCU to increase total memory size, such connection 
increases power consumption by many folds due to the 
increased I/O, thereby leading to reduced battery life. Also, 
slower memory such as flash demands more energy [8]. It was 
shown in [9] that 1mJ/KB is the average energy consumed by 
the whole system of the wearable in a sequential data write to 
local flash indicating a directly proportional (i.e. linear) 
relation between storage size and energy consumption. In a 
typical wearable with single sensor, the wearable storage 
accounts for almost 1/3rd energy [9]. Memory may be put on 
the same die as the core to reduce power consumption, but 
such on-die memory is pricier and hence difficult to integrate 
in low-end wearables.  

 

Figure 1.  Single lead ECG analyis on MCU 

In premium wearables and loop recorder that can afford 
higher amount of memory (Flash and RAM) in SoC, battery 
consumption still dominates the design decisions. This is 
because battery consumption gets greatly affected by the 
residence of the code (flash or RAM). For example, a code 
executed from the flash memory consumes 275µA/MHz as 
compared to when executed from the RAM (150µA/MHz) 
[10]. Communication takes up a significant energy. It is seen 
that just by sending feature extracts instead of sending raw data 
at 100Hz sampling of sensor, close to 20% of total energy was 
saved [11]. Memory as well as the energy cost of bigger 
models is one more important factor. All these factors above 
indicate that it is imperative to reduce the size of DL models 
to fit in the limited memory available in these devices and 
adhere to the power consumption requirement so that they can 
qualify as medical grade device.  Authors in [12], provide the 
hardware landscape of such implantable or wearable devices 
and their functionality. The paper does not provide the 
hardware specifications for the devices, however, considering 
that they are battery powered and long running devices, we can 
consider the specifications of a low-power microcontroller 
platform to exist within the device. 

C. The Proposed Solution Overview 

Let us consider that certain pre-trained DNN model 𝒟 
achieves performance metric (say, in terms of accuracy, which 
can also be measured in terms of sensitivity, F1-score, etc.) 𝜌 
and the trained model size is ℳKB for an ECG classification 
task ℰ. Let us further consider the following: target micro-
controller of wearable device is having memory budget 
ℳ𝑐𝑜𝑚𝑝𝑟KB and the allowed performance penalty is 𝛿, 𝛿 ≪ 1. 
Let the performance metric of the micro-controller deployed 

trained model be 𝜌′  and 
𝜌−𝜌𝑐𝑜𝑚𝑝𝑟

𝜌
≤ 𝛿.  

In a likely scenario, we get ℳ ≫ ℳ𝑐𝑜𝑚𝑝𝑟 . In order to 
achieve a deployable trained model, we need to have at least 

ℳ

ℳ𝑐𝑜𝑚𝑝𝑟 =𝛼 compression gain while 
𝜌−𝜌𝑐𝑜𝑚𝑝𝑟

𝜌
≤ 𝛿. Classically, 

such model compression need can be attempted using 
quantization and pruning approaches [7]. However, we find 
that typical wearable micro-controller memory budget is less 
than 100KB (ℳ𝑐𝑜𝑚𝑝𝑟 < 100) and a novel model 
compression approach is required. ECG TinyML is such a 
novel model compression method that fulfills the criteria for 
ECG classification at wearable devices. Additionally, and 
importantly, we need to significantly reduce the run time or 
equivalently computational load (less computational load 
results in less power consumption) of the deployable 
compressed model, which can be estimated from the number 
of floating point operations (FLOPs) of the base line model 

(ℱ) and that of compressed model (ℱ𝑐𝑜𝑚𝑝𝑟), i.e. 
ℱ𝑐𝑜𝑚𝑝𝑟

ℱ
< 𝜃, 

where, 𝜃 ≪ 1.  

III. TINYML FOR ECG CLASSIFICATION- PROPOSED MODEL 

COMPRESSION ALGORITHM 

Larger and complex DNN models are the current state-of-

the-art for solving different classification problems, including 

ECG classification tasks [3]. Such networks often consist of 

many million parameters and the memory requirement is too 

demanding which might not be supported by tiny edge 

devices for in-situ inference purpose. In order to reduce the 

complexity of the baseline DNNs, model quantization and 

pruning are the widely-used approach [11, 13].  

A.  Quantization and Pruning Based Deep Network 

Compression- Classical Approach 

Conventionally, pruning and quantization are the widely-
used model compression techniques. Pruning helps in 
removing unnecessary connections of the weight tensor of the 
baseline DNN to reduce the model storage memory size. 
Quantization on the other hand is reducing the precision of the 
datatype into lower bits such that the consumption of memory 
on the device is less compared to the original model. In a 
typical deployment scenario, baseline model is pruned using 
TensorFlow (TF) model optimization and quantization is 
done to integer data type precision to reduce the memory and 
computational overload [11, 16]. We observe that pruning and 
quantization methods are not sufficient to reduce the baseline 
DNN for MCU-based ECG analytics.  

B. Piecewise Linear Approximation for Deep Network 

Compression as ECG TinyML- Our Approach 

In this paper, we employ a novel Knowledge Distillation 

(KD) method to uniquely compress a baseline DNN model to 

achieve significant compress gain while maintaining similar 

performance metric (in terms of test accuracy, test sensitivity, 

test precision, test F1-score metrics) [13]. KD approach 

enables effective transfer of the knowledge from a large pre-

trained DNN model (teacher model) to a compact model 

(student model). Contrary to conventional KD method, where 

homogeneity in the teacher-student architecture is maintained 

(i.e. student model is smaller DNN), we propose 

heterogeneity in the KD process, where student model 

architecture is a shallow machine learning algorithm. 
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Let us consider a given ECG dataset which consists of 

signals 𝒮, and their associate label vector ℒ. Let ℊ(. ) denote 

all the operations performed till the penultimate layer, i.e, the 

layer just before the last softmax layer of the trained DNN 

model. Then we have, 𝜌𝑜𝑢𝑡  = ℊ(𝒮), and predicted label ℒ′= 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜌𝑜𝑢𝑡). 

We try to estimate ℊ(. ) and then use the last layer of the 

trained DNN to generate the class labels. This gives us an 

alternative to directly learning the relationship between the 

input signal and hard labels, which is a more difficult 

problem. As the relationships learnt by DNNs are usually 

complex in nature, we take a piecewise approach: divide the 

input space into smaller pieces and then approximate the input 

𝒮 – output 𝜌𝑜𝑢𝑡 relationships for each of them using separate 

linear models. The method is described below. 

 
Algorithm: Piecewise linear approximation for baseline DNN 

model Compression- ECG TinyML (proposed approach) 

Producing the compressed model from baseline DNN: 

 

Input: Training ECG data- 𝒮, trained DNN model- 𝒟. 

Output: Compressed model suitable for deployment on resource 

constrained devices: Π𝐸𝐶𝐺 𝑇𝑖𝑛𝑦𝑀𝐿. 

Procedure: 

Step 1: We cluster (using k-means algorithm) 𝒮 into 𝑘 distinct 

groups and learn the set of cluster centroids 𝒞. These clusters 

provide us the pieces of the input space of 𝒮. The optimal number 

of clusters for this dataset = 3. We explore number of clusters in 

the range 1 to 5. Based on the 5-fold cross validation performance 

over the training data, we select the optimal number of pieces in 

which the input space is divided. 

Step 2: The set of pairs  {(𝒮, 𝜌𝑜𝑢𝑡)}, is generated using 𝒟, where 

𝜌𝑜𝑢𝑡  = ℊ(𝒮).  

Step 3: These pairs, {(𝒮, 𝜌𝑜𝑢𝑡)}, are associated with the 

corresponding cluster ℛ of 𝒮. 

Step 4: For each element of ℛ, we learn a new linear 

approximation model by solving the linear least squares problem 

with regularization. 

𝑎𝑟𝑔𝑚𝑖𝑛𝑊𝑘

 ‖𝜌
𝑘,𝑜𝑢𝑡

− 𝑊𝑘𝒮𝑘‖ +  𝜆‖𝒮𝑘‖ 

𝑊𝑘
𝑇 = (𝒮𝑘𝒮𝑘

𝑇
+  𝜆𝐼)−1𝒮𝑘𝜌

𝑘,𝑜𝑢𝑡
𝑇   

where, 𝑊𝑘 represents the weights of the different linear models 

and λ is the regularization parameter. 

Step 5: 𝑘, the number of clusters or pieces is tuned by searching 

over different values to achieve closest approximation of DNN. 

Step 6: We get the compressed model, Π* which consists of 

cluster centroids, set of linear models for each of the clusters and 

the last layer weights of the DNN model (𝒟). 

Step 7: Π* is further quantized to Π𝐸𝐶𝐺 𝑇𝑖𝑛𝑦𝑀𝐿 for ensuring model 

compactness (Please refer Section IIIA). 

 

ECG signal classification using 𝚷𝑬𝑪𝑮 𝑻𝒊𝒏𝒚𝑴𝑳: 

 

Input:  Test ECG signal: 𝒮𝑡𝑒𝑠𝑡 

Output: Label denoting health condition 

Procedure: 

Step 1: First the cluster membership of 𝒮𝑡𝑒𝑠𝑡   is ascertained by 

determining the nearest cluster centroid present in Π𝐸𝐶𝐺 𝑇𝑖𝑛𝑦𝑀𝐿 . 
Step 2: Using the linear regression model associated with the 

identified cluster, 𝜌𝑜𝑢𝑡
′

   is computed. 

Step 3: Finally, after multiplication of 𝜌𝑜𝑢𝑡
′  with the last layer 

weights, we get the predicted health condition. 

IV. EXPERIMENTAL RESULTS 

In order to establish the efficacy of our proposed method, 

we experiment with publicly available ECG dataset [14][15] 

and use state-of-the-art classification model ResNet [3].  

A. Dataset Description 

ECG dataset is extracted from the BIDMC Congestive 

Heart Failure Database [15]. The original data is sampled at 

250 Hz and pre-processed in two steps: (1) extract each 

heartbeat, (2) make each heartbeat equal length using 

interpolation with time series length equals to 140 time steps 

[14]. There are 5 different classes: Normal, R-on-T Premature 

Ventricular Contraction, Supraventricular Premature, 

Premature Ventricular Contraction, and Unclassifiable Beat. 

The number of training and testing instances are 500 and 4500 

respectively. We have used 5-fold cross-validation on training 

data (500 instances) is used to tune the parameters. Since, it is 

5-fold we have 80% train and 20% validation for each 

iteration. 

 

B. Experimental Procedure 

The ResNet based DNN model is considered as the baseline 

model for our ECG analytics application, which is a state-of-

the-art algorithm for time series classification tasks including 

ECG classification [3]. The baseline model is trained on a 

GPU (Nvidia Quadro P5000 GPU with 16 GB GPU RAM) 

using the given training ECG data to get the pre-trained 

baseline DNN model 𝓓. We further compute the performance 

metrics of the baseline DNN model over the testing dataset. 

The pre-trained model is 9.71 MB (ℳ) in size.  The MCU 

(e.g. STM 32 MCU) for edge analytics demands for sub-100 

KB (ℳ𝑐𝑜𝑚𝑝𝑟) model memory size.  Thus, the model 

compression gain 𝛼 = 
ℳ

ℳ𝑐𝑜𝑚𝑝𝑟 = 
9710

100
 = 97.1 and we set the 

allowed performance penalty is 𝛿 = 1%. 
In our method, there are two control parameters: k, the 

number of pieces or clusters and λ, regularization parameter 

for each of the respective linear models. In order to find the 

optimal model parameter, we tune them using 5-fold cross 

validation on the training data itself. For k, we consider the 

range 1 to 5. And for λ, search was done over the values 

ranging from 0.01 to 1000. The resultant compressed model 

is then deployed on the microcontroller and tested using the 

test data.  

B. Results 

The classification inference performance of our solution 
along with the comparison with baseline DNN model is 
detailed in Table II. We measure the weighted performance 
metrics including test accuracy, test sensitivity, test precision 
and test F1-score for the comparative study. In Table I, we 
depict the limitation of pruning and quantization approach, 
where the compressed model size is achieved to 801 KB, 
which does not fit for sub-100 KB model footprint. The typical 
model construction workflow for edge deployment (where we 
need to deploy Tensorflow (TF) Lite model [17]) is as follows: 
Baseline TF model → TF Lite  model → Compressed TF Lite 
model [16]. The model deployment workflow for ECG 
TinyML is as flows: Baseline TF model → Piecewise Linear 
Approximation (PLA)  model → PLA with quantization in TF 
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Lite format. We have applied integer with float fallback with 
INT8 quantization. 

TABLE I.  MODEL COMPRESSION BY CLASSICAL PRUNING AND 

QUANTIZATION APPROACHES 

Method 
Method Performance 

Test 

accuracy 

Test 

sensitivity 

Test 

precision 

Test F1-

score 

Model 

size 

Baseline 

DNN 
(ResNet) 

[28] 

0.931 0.931 0.924 0.926 
9.71 
MB 

Baseline 

model TF 
Lite format 

0.931 0.931 0.924 0.926 
3.13 

MB 

Pruned and 

quantized 
TF Lite 

0.929 0.931 0.927 0.928 
0.801 

MB 

TABLE II.  MODEL COMPRESSION BY OUR PROPOSED ECG TINYML 

METHOD 

Method 
Method Performance 

Test 

accuracy 

Test 

sensitivity 

Test 

precision 

Test F1-

score 

Model 

size 

Baseline 

ResNet [3] 

0.931 0.931 0.924 0.926 
9.71 

MB 

Piecewise 
Linear 

Approximati

on (PLA) 

0.938 0.938 0.926 0.929 
0.443 

MB 

PLA- 

quantized 

TF Lite 

(ECG 

TinyML) 

0.937 0.937 0.925 0.928 
0.062 

MB 

We like to mention that the number of parameters of 

baseline ResNet model is ResNet 804,169, whereas there are 

55710 parameters in our proposed compressed PLA model. 

Another important aspect of this experimental study is to 

demonstrate the low computational load in terms of FLOPs in 

ECG TinyML than the baseline ResNet model as shown in 

Table III. We also notice the unchanged computational load 

of pruned and quantized model (pruning and quantization 

algorithms are designed to reduce the model memory size, not 

to reduce the computational load like the number of matrix 

multiplications in DNN models). 

TABLE III.  COMPUTIONAL LOAD (IN TERMS OF FLOPS) COMPARISON 

 Method FLOPs 

Baseline DNN (ResNet) [28] 222908190 

Baseline model pruned and 
quantized TF Lite 

222908190 

PLA- quantized TF Lite 

(ECG TinyML) 
38554 

 

C. Result Summary and Observation 

Our experimental results reveal that the proposed ECG 

TinyML demonstrates high model compression gain (𝛼 =
156), insignificant performance penalty (𝛿 ≅ 0) and 

substantially less computational load for effective run time 

execution (𝜃 = 1.72 × 10−4) and consequently, higher 

energy saving. Hence, ECG TinyML is well-suited for edge 

deployment. Subsequently, the very tiny model foot print of 

62.3 KB and low FLOPs of 38554 pave us to explore the 

feasibility of ECG TinyML deployment in cardiac 

implantable devices like ILR. 

V. CONCLUSION 

The primary objective of ECG tinyML is to establish the 

feasibility of a transformation process for deploying 

sophisticated, complex and highly computationally intensive 

DNNs to the microcontroller based wearable ECG devices 

under the constraints of tinyML scenario. We intend that ECG 

tinyML will pave path towards automated detection of CVDs 

and act as a pivotal component for building early warning 

systems. We envisage our future work to encompass larger set 

of ECG classification tasks including different arrhythmias 

for edge deployment as well as to explore the likelihood of 

deploying in array of implantable devices including ILRs. 
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