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Abstract— Computation of Fractional Flow Reserve (FFR)
through computational fluid dynamics (CFD) is used to guide
intervention and often uses a number of clinically-derived
metrics, but these patient-specific data could be costly and
difficult to obtain. Understanding which parameters can be
approximated from population averages and which parameters
need to be patient-specific is important and remains largely
unexplored. In this study, we performed a global sensitivity
study on two 1D models of FFR to identify the most influential
patient parameters. Our results indicated that vessel compli-
ance, cardiac cycle period, flow rate, density, viscosity, and
elastic modulus contributed minimally to the variance in FFR
and may be approximated from population averages. On the
other hand, outlet resistance (i.e., microvascular resistance),
stenosis degree, and percent stenosis length contributed the
most to FFR computation and needed to be tuned to the patient
of interest. Selective measuring of patient-specific parameters
may significantly reduce costs and streamline the simulation
pipeline without reducing accuracy.

I. INTRODUCTION

Fractional Flow Reserve (FFR) is a hemodynamic metric
used to evaluate the functional significance of coronary
atherosclerosis lesions. The standard-of-care is to take pres-
sure measurements using a flow catheter, but this method is
used in the minority of cases because it is costly and invasive
[1]. To this end, several computational fluid dynamics (CFD)
models [1], [2] have been developed to compute FFR. CFD
is a branch of fluid mechanics that uses numerical analysis
to solve the equations of fluid flow, where three-dimensional
(3D) CFD models use 3D computational domains and one-
dimensional (1D) models use compliant tubes with a single
axial dimension. 3D models are able to capture complex
hemodynamic patterns, but 1D models are often preferred
for allowing blood flow to be simulated in a fraction of
the time. While 1D models have been validated against
3D models and in vivo measurements of FFR, it remains
unclear which parameters contribute significantly to FFR
computation. CFD simulations generally aim to incorporate
as much patient-specific data as possible to guide model
inputs [3], but obtaining patient-specific measurements can
be costly and time-consuming. We hypothesized that much
of the data contributes minimally to CFD output and may be
approximated from population averages. Here, we performed
a global sensitivity study on clinically validated 1D models
to identify parameters that contribute minimally to FFR.
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Previous work focuses on optimizing 1D models, identify-
ing the most important parameters for FFR computation, and
exploring the need for a separate pressure loss term (stenosis
model) to capture the impact of a stenosis. Blanco et al. [1]
found that using a 1D model improved correlation with 3D
results when a stenosis model was defined (r = 0.95 vs.
0.88) [1]. However, Boileau et al. [2] demonstrated that a
pressure loss model was not required to capture the impact of
the stenosis compared with a 3D FFR simulation. Therefore,
the need for a separate stenosis model remains a controversial
topic. Yin et al. [4] used 1D models to perform a pa-
rameter sensitivity analysis and demonstrated that resistance
accounted for the largest source of error in FFR calculation.
Conversely, Fossan et al. [3] found that resistance and inlet
flow rate contributed most to the variance in FFR. However, it
is unclear whether other hemodynamic (vessel compliance,
cardiac cycle period, viscosity, density) and geometric pa-
rameters (stenosis geometry, elastic modulus) are important
in computing FFR. In short, understanding which parameters
contribute minimally to FFR remains largely unexplored.

We first validated two 1D CFD models against in vivo
measurements of FFR (FFRclinical). The models included a
stenosis model with an additional pressure loss term (FFRS)
and a no stenosis model (FFRNS) without that term. The
stenoses were unaltered in the patient-specific geometries for
both models. We performed a global sensitivity analysis to
determine which input parameters are important for FFR
computation. Understanding which parameters to measure
from patient data (i.e., patient-specific) and which parameters
to approximate (i.e., non-patient-specific) is important as it
could streamline the simulation workflow. In short, we made
the following contributions: (1) validation of 1D computed
FFR with in vivo FFR in 10 patients; (2) determination if
stenosis models are required for accurate 1D FFR computa-
tion by comparing a stenosis and no stenosis model; and (3)
identification of input parameters that could be approximated
from population averages. Our results demonstrated that a
stenosis model may not be required and that most parameters
may be approximated from population averages.

II. METHODS

A. Patient sample

Retrospective and de-identified data were acquired for ten
patients from Brigham and Women’s Hospital. The study
was approved by the Partners Institutional Review Board.
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Fig. 1. Boundary conditions and input parameters for 1D simulation. Centerlines were used as the geometric input for 1D simulations. Pulsatile flow
rate was used as the inlet boundary condition and a 2-element Windkessel (i.e., resistance and compliance) was used at the outlet boundary condition.

Imaging data were used to reconstruct geometries and ex-
tract stenosis degree and length. Cardiac cycle period, flow
rate, and viscosity were derived from clinically measured
hemodynamic data. In vivo FFR measurements were used as
gold standard.

B. 1D modeling approach

3D coronary geometries were reconstructed from 2D an-
giograms using an algorithm that estimates cross-sectional
diameters and centerlines. This methodology is described in
Vardhan et al. [5], [6]. 1D coronary geometries were obtained
by extracting the centerlines of 3D reconstructed geometries
using Mimics (Materialise, Belgium). Stenosis degree and
percent stenosis length were measured from 3D geometries
using Blender (Blender Foundation, Netherlands).

We used a 1D blood flow simulator that is described in
Feiger et al. [7]. The simulator was based on commonly
used 1D blood flow equations derived from Navier-Stokes
Equations (Eqn. 1) and was solved using a MacCormack
finite difference scheme [7]:
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where A is cross-sectional area, Q is flow rate, P is pressure,
ρ is density of blood, α describes the velocity profile, and
Cf is a frictional term that incorporates dynamic viscosity.
Furthermore, P is related to A (Eqn. 2):
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where Pext is external pressure exerted on blood vessels
and A0 is the cross-sectional area when P = Pext [7].
β describes arterial stiffness and is a function of A0, wall
thickness (h), elastic modulus (E), and Poisson’s ratio (ν).
We used constant h of 0.945 mm [8] and E of 1.41 MPa
[9] based on literature. ν was assumed to be 0.5 [10].

Blood was modeled as an incompressible Newtonian fluid
with density of 1060 kg/m3, and dynamic viscosity was de-
rived on a per-patient basis using an experimentally derived
relationship between hematocrit and viscosity described in

[11]. To model the effects of the stenosis, we coupled the
1D model to a pressure loss term (Eqn. 3) for FFRS :
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where ∆Ps is pressure drop across a stenosis, µ is blood
dynamic viscosity, ru is radius of unstenosed artery, Au

is cross-sectional area of unstenosed artery, As is cross-
sectional area of stenosed artery, and Ls is stenosis length.
Kv , Kt, and Ku are viscous, turbulent, and inertial coef-
ficients respectively, with Kv = 32(0.83Ls + 1.64Ds) ×
(Au/As)

2/Du, Kt = 1.52, and Ku = 1.2. Du and Ds are
diameters that correspond to Au and As, respectively.

Our boundary conditions incorporated a pulsatile flow
waveform at the inlet, derived from clinically measured
coronary fraction and waveforms in the literature [12], and
2-element Windkessel models at the outlets (Fig. 1). Outlet
resistance-compliance values were computed using pressure
measurements recorded from patient data and the expected
flow rate at each outlet (Fig. 1). The expected outlet flow
rates were estimated using Murray’s Law [13]. We iteratively
scaled resistance-compliance outlet values collectively until
we matched clinically measured hyperemic systolic and
diastolic pressure to a tolerance of 3%.

TABLE I
INPUT PARAMETER BOUNDS FOR 1D COMPUTED FFR

Parameter (Symbol) Bounds Unit
Outlet Resistance Scale Factor (R) [0.760, 29.50] -
Vessel Compliance Scale Factor (C) [0.002, 0.060] -
Cardiac Cycle Period (τ ) [0.566, 1.090] s
Flow Rate (Q) [1.64, 6.16] cm3/s
Density (ρ) [1.02, 1.10] g/cm3

Viscosity (µ) [1.70, 2.08] cP
Elastic Modulus (E) [1.19, 1.55] MPa
Stenosis Degree (SR) [14.1, 52.1] %
Percent Stenosis Length (SL) [8.50, 39.8] %

C. Global sensitivity analysis

Parameters explored in the global sensitivity study (Table
I) were assumed to be independent and to follow a uniform
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Fig. 2. Correlation and agreement between 1D and in vivo FFR. The columns compare (A) FFRS and FFRclinical, (B) FFRNS and FFRclinical,
and (C) FFRS and FFRNS . Scatter plots (top row) demonstrated good correlation and Bland-Altman plots (bottom row) revealed bias in some cases.

distribution. Due to the variability of parameter bounds
in the literature [3], [4], we obtained parameter bounds
from our patient cohort. Outlet resistance (i.e., microvascular
resistance), vessel compliance, density, and elastic modulus
were not clinically measured but derived from literature or
estimated. As resistance and compliance vary at each outlet
for all geometries, we scaled resistances and compliances on
a per-patient level to preserve flow distribution.

First-order (Si) and total Sobol indices (STi) were com-
puted for each parameter based on the framework from Eck
et al. [14] and averaged over all patients. We used a Monte
Carlo approach to elucidate the contribution and interaction
of input parameters on FFR. Si quantifies the proportion that
each parameter (Zi) contributes to the total variance in FFR
(V[Y ]) when neglecting interaction (Eqn. 4):

Si =
V[E[Y |Zi]]

V[Y ]
(4)

where V[E[Y |Zi]] is the variance of the expected value of
output Y given a fixed value of input parameter Zi [14]. STi

quantifies the contribution to the total variance as well as all
interaction effects for each parameter (Eqn. 5):

STi = 1− V[E[Y |Z−i]]

V[Y ]
(5)

where Z−i is a set of all input parameters excluding Zi

[14]. The second order Saltelli sequence was used over the
Sobol sequence to minimize error rates in the Sobol indices.
Convergence was assumed to occur when the bootstrapped
95% confidence interval width of each Sobol index was
smaller than 10% of the maximum Sobol index for each
parameter [15]. 2.4 million simulations were run on the Duke
Compute Cluster to achieve converged Sobol indices.

III. RESULTS

A. Clinical validation

FFRS and FFRNS both correlated well with
FFRclinical (r = 0.94 and 0.95, respectively). The scatter
plots in Fig. 2 demonstrated that there was a tendency

for both 1D models to overestimate FFR for lesions with
FFRclinical > 0.80, but both models had better correlation
for FFRclinical ≤ 0.80. These observations were also seen
in the Bland-Altman plots in Fig. 2, where FFRS and
FFRNS had bias of 0.066 (CI : [0.028, 0.105]) and 0.074
(CI : [0.040, 0.108]), respectively. Nevertheless, both 1D
models correctly predicted if lesions were above or below
0.80 in all 10 patients.

When comparing FFRS to FFRNS , Fig. 2 demonstrated
a near-perfect Pearson’s correlation of 0.99, and the Bland-
Altman plot in Fig. 2 indicated almost no bias between
the two models (0.018, CI : [−0.003, 0.018]). Therefore,
coupling the 1D model to a separate pressure loss term may
not be required to compute FFR accurately.

B. Global sensitivity study

The global sensitivity study revealed that few parameters
significantly contributed to the variance in FFR. STi and
Si were similar, which suggests that interactions between
parameters were negligible. Fig. 3 demonstrated that only
outlet resistance (R) and stenosis degree (SR) significantly
contributed to variance for FFRS , while only R significantly
contributed to variance for FFRNS . Without a stenosis
model, SR contributed less to the variance compared to
simulations with a stenosis model. The relative contribution
of R increased in simulations without a stenosis model.
Since R was tuned against clinically measured pressure data,
the results suggest that prescribing accurate outlet boundary
conditions were essential for computing FFR.

Between FFRS and FFRNS , the sensitivity of the model
to percent stenosis length (SL) increased when neglecting the
stenosis model. Given how close it was to the 0.05 sensitivity
threshold [15], it is possible that SL could cross the threshold
in different coronary lesions and patient cohorts for FFRNS .
On the other hand, compliance, cardiac period, flow rate,
density, viscosity, and elastic modulus were far below the
threshold for both 1D models, which suggests that they are
unlikely to cross the threshold in different patient cohorts.
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Fig. 3. Global sensitivity analysis. Sensitivity indices were averaged for all 10 patients. Error bars represent the standard error and the dotted line is the
threshold for significance. Results demonstrate that the majority of parameters may be approximated from population averages.

IV. DISCUSSION AND CONCLUSION

Obtaining patient-specific parameters for CFD simulations
is difficult and costly. Through sensitivity analysis, this work
provided insight into which parameters could be approxi-
mated from population averages, and which parameters need
to be patient-specific, for accurate FFR computation.

Comparing both 1D models to in vivo FFR revealed high
correlation and agreement, and near-perfect correlation and
agreement between both models. Global sensitivity analy-
sis indicated that vessel compliance, cardiac cycle period,
flow rate, density, viscosity, and elastic modulus do not
significantly contribute to the variance in FFR and may be
approximated from population averages, whereas only two
parameters would need to be measured on a patient-specific
level for FFRS (R and SR) and FFRNS (R and SL). R had
the highest contribution to FFR, and this result is consistent
with other global sensitivity studies [3], [4].

While FFRS and FFRNS were strongly correlated,
the models differed based on the significant decrease in
contribution of SR. It was likely that FFRNS was not able
to effectively capture the full pressure drop when varying SR

to extreme values, but FFRS was able to capture the full
pressure loss as it directly modeled pressure loss across the
stenosis and so had increased contribution to FFR.

This study had several limitations. There was a class
imbalance between cases above and below 0.80. Based on
our results, the 1D models computed FFR more accurately
for cases below 0.80 than for cases above 0.80. The global
sensitivity study was limited by the scope of the problem
definition. Here, the majority of parameters considered were
hemodynamic parameters, yet geometric parameters may
also play an important role in computing FFR [16].

In conclusion, this work suggests that it is possible to
prioritize several input parameters while approximating other
parameters from population averages without trading-off per-
formance. These findings could simplify parameter extraction
workflow through reduced patient-specific data.
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