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Abstract— Coronary artery disease (CAD) is an important
cause of morbidity and mortality. CT coronary angiography is
considered as first-line of investigation in patients suspected of
having CAD. Coronary artery centerline extraction is a
challenging prerequisite for coronary artery stenosis evaluation.
These challenges include the small and complex structure,
variation of plaques and imaging noise. Deep learning methods
often require adequate annotated data to build a good model.
This work aims to adopt a dataset that has partial annotation to
augment the data to train a Coronary Neural Network (CorNN)
to track the coronary artery centerline. We combined a small
training dataset with densely labelled centerline and radius,
augmented with a larger dataset with only the centerline
sparsely labelled to train networks to track centerlines from 3D
computed tomography coronary angiography. The vessel
orientation estimation is patch based, with or without additional
radius prediction. The patch data are carefully positioned and
sampled, which are tagged with the orientations computed
based on the centerlines. Our experiment results show that, with
the augmentation of the new data, although partially annotated,
nearly 10% or more improvement has been achieved for the
coronary artery extraction by the proposed approach.

I. INTRODUCTION

According to the World Health Organization, 17.5 million
lives are taken each year by CVDs (Cardiovascular diseases),
an estimated 31% of all deaths worldwide [1]. Coronary artery
disease (CAD), the most common type of CVD, is the
narrowing or blockage of coronary arteries. The cause of CAD
is the plaque deposited in the walls of coronary arteries. The
buildup of plaque reduces the supply of blood or in some cases
block blood flow to heart muscles, which leads to heart attack
and even heart failure [2].

For patients suspected of having CAD, computed
tomography coronary angiography (CTCA) can be used to
examine and evaluate the severity of coronary stenosis.
However manual coronary artery tree extraction is not only
time-consuming but also skill demanding. Therefore,
researchers developed (semi-) automatic approaches that can
minimize the user interaction. In [3], Tek et al proposed a
graph-based algorithm that used a multi-scale medialness
filters and minimum-path algorithm to compute the tree of
coronary artery centerlines. The algorithm could lead to short
false positive section and leak to veins. Other conventional
methods proposed include semi-automatic or fully automatic
methods as summarized in [4], by region growing, fitted shape
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and model, tube detection, connectedness tree algorithm, and
minimum path approaches. In [5], Yang et al proposed a
method based on improved vesselness filter. An interesting
idea is to use rays casted to a sphere to describe the geometric
features.

Wolterink et al [6] proposed a deep learning-based
approach to centerline extraction. The method trained a
convolutional neural network (CNN) to predict the direction
and radius of coronary artery centerlines. With ostia and
candidate centerline seed point detection, fully automatic
coronary artery centerlines can be extracted. No hand-crafted
filter or appearance feature is needed. However, this method
requires the training datasets with good labels of centerlines
and the radius, not only for the radius estimation but also for
guidance to process the training data to obtain the ground truth
of the orientations. We adopted the networks and used data
augmentation for the task by tracking the centerline only
without the radius estimation. As a result, we improve the
tracking accuracy by leveraging on a larger dataset without the
tedious radius labeling on the centerlines by a simple CorNN.

II. RELATED WORKS

A. Minimal Cost Path (MCP)

Many past works are based on Minimal Cost Path (MCP)
method e.g. the work in [7], which is based on two manually
selected points along the coronary artery, and a minimal cost
on a path between two predefined points on each centerline.
However, MCP is easily affected by other short-cut paths
between points.

B. 3D segmentation approach

The type of methods obtains the tree of coronary arteries
using lumen segmentation first, and extract the centerlines
following the segmentation of vessel [8]. This method needs
to have a segmentation model [9]. It is time-consuming
because the lumen segmentation is done in the full 3D CT if no
special preprocessing is applied to limit the searching space.

III. METHOD

A. CNN for Direction and Radius Prediction

The original CorNN predicts the direction and radius of an
input vessel patch [6]. The output consists of 500 channels
corresponding to all the possible 500 directions and 1 channel
for radius. The determination of direction becomes a problem
of classification instead of regression, while the determination
of radius is a regression problem. The architecture of this
network is shown in Table I.

B.  CNN for Direction Prediction only

For weakly annotated data, we have only the centerlines
without the radius. Thus, the network can predict only the
directions of the centerline given a patch around a centerline
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point. The output of last layer becomes a 500-dimensional
vector corresponding to all the possible 500 directions. There
is no output for radius. The architecture of this network is

adjusted in Table II.
TABLE I. CNN FOR DIRECTION AND RADIUS PREDICTION
Layer Input Output Kernel | Dilation
1 1x19x19x19 32x17x17x17 | 3x3x3 1
2 32x17x17x17 | 32x15x15x15 | 3x3x3 1
3 32x15x15x15 | 32x11x11x11 | 3x3x3 2
4 32x11x11x11 32x3x3x3 3x3x3 4
5 32x3x3x3 64x1x1x1 3x3x3 1
6 64x1x1x1 64x1x1x1 Ix1x1 1
7 64x1x1x1 501x1x1x1 I1x1x1 1
TABLE II. CNN FOR DIRECTION PREDICTION ONLY
Layer Input Output Kernel | Dilation
1 1x19x19x19 32x17x17x17 | 3x3x3 1
2 32x17x17x17 | 32x15x15x15 | 3x3x3 1
3 32x15x15x15 | 32x11x11x11 | 3x3x3 2
4 32x11x11x11 32x3x3x3 3x3x3 4
5 32x3x3x3 64x1x1x1 3x3x3 1
6 64x1x1x1 64x1x1x1 Ix1x1 1
7 64x1x1x1 500x1x1x1 Ix1x1 1

C. Loss Functions

Cross-entropy loss [10] is used to optimize the model by
minimizing the difference between two probability
distributions. Given y, and y where y is the ground truth and
¥ is the predicted value. The cross-entropy function is defined
by

Ly,y) = —(ylog(®) + (1 —y)log(1 - 7))

D. Improvement Using Partially Labeled Data

The size of fully labeled dataset (with both centerline and
radius at each centerline point) CTCAOS [11, 6] is small. With
only CTCAOS8 for training, the performance of the trained
model is not good enough for an automatic approach. One way
is to enlarge the size of the training data e.g., including another
CTCA13 dataset [4]. However, CTCA13 dataset comes with
only centerline without radius information.

To address this problem, we can manually set the value of
the radius used for CTCA13 dataset as 3mm, which is a
slightly larger than the actual vessel radius of most coronary
arteries. The radius R of a sphere at each centerline point x
determines the associated direction to its previous point and
the direction to its next point located on the sphere. The two
directions will be set as the ground truth direction for the
training patch. The reasons are as follows to set a radius
slightly larger than the actual radius, so it does not affect much
on the computing of the proper direction d.

If the radius is much larger than the actual one, it will result
in the inability to find the correct orientation and points given
a patch as shown in Figure 1(a), especially for the skewed
arteries.

(a) (b) ©
Figure 1. (a) Direction d from point x to next point with R >> actual radius.
(b) Direction d from point x. to next point with R > actual radius. (c) Direction

d from point x to next point with R <<actual radius.The orientation is totally
wrong (with augmentation).

For setting a radius slightly larger than the actual one, the
correct directions and the next neighboring centerline point
can still be found along the direction, shown in Figure 1(b).

Augmentation with Partially Labeled Data

Most of the time, machine learning method can achieve
much better result with increased training samples. For
centerline tracking [6], it augments the samples by shift and
rotation around the reference centerline points.

If the radius is smaller than the actual one, after
augmentation, the current point is shifted to x" which is not on
the centerline. The previous point and the next point of
x' may be on the upper or lower side of x'as shown in Figure
1(c), which outputs a wrong orientation for the training patch.

e  Shift: To get augmented samples that do not locate at the
centerlines exactly, it shifts the center point randomly
using a 3D normal distribution with x = 0.0 and 6 = 0.25R".
R’ is the preset vessel radius.

For the partially labeled data when the augmented center
point is not on the centerline, the value of radius has a greater
impact on the computation of the vessel prediction directions.
R’=3 mm is too large for data augmentation for small vessels.
Thus, for data augmentation using partially labeled data, R '=1
mm is used.

e Rotation: After shifting center points and obtaining the
3D patch centered at the new point, it rotates the patch
randomly to generate more patch samples.

IV. EXPERIMENTS

A. Data Preprocessing

Two datasets were used in the experiments, i.e., CTCAOS
dataset [11, 6] and CTCA13 dataset [4].

There are 8 data available in CTCAOS dataset (dataset00 to
dataset07) labeled. Each of them contains one CTCA image
and labels of a few vessels as reference centerlines with the
centerline coordinates and radius of the vessel at each point.
Due to no ground truth available in the rest set in CTCAO0S, we
use leave-one-out for training and testing. In each round of
training, we also keep one subject data as validation set. In
CTCAL13 dataset, we use 18 data of them for our study due to
the training time limitation. Each of them contains one 3D
CTCA scan and 4 to 5 vessels with labeled centerline
coordinates, without radius information. All CT images are
resampled with isotropic resolution 0.5mm.

The following steps are repeated for all the vessels of the 8
datasets from CTCAOS dataset.
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1. For each current center point P., another two center points
P), and Pj, related to P, are searched as follows and
recorded as the previous point and the next point of P..
Firstly, P, is taken as the starting point and we look
backward along the centerline. When the distance
between P, and the found point is slightly larger than the
given radius R, the found point is retained as the previous
point P,.. Then P, is still taken as the starting point, but we
look forward along the centerline. Another point is found
and retained as the next point Py,.

0<(P.-Py)—R<0.01
0<(Py-P,)-R<0.01

2. For each P, located at the centerline, a 3D image patch of
size 19 x 19 x 19 centered at P, is extracted. Its two
referenced directions need to be calculated as follows. A
sphere with the given R centered at P, is used to store all
the 500 possible directions by distributing 500 points
evenly on its surface [6]. For each point of the 500 points,
there is a vector from P. to it, with orientationD;,i =
1,...,500. The two nearest vectors in D; to the vector
P,-P. and Py,-P, are set as the vessel orientation at the
patch with the probabilities of these two directions as 0.5.
All the other 498 directions have set with probability zero.

For CT images in CTCA13, the radius information is
missing. We assign a reasonable value R=3mm as the radius
to get P, and P, for vessel orientation estimation. And
R’=1mm for augmented data selection.

The centerline tracking in all experiments is fully
automatic, by using the centerline seed point detection and
ostia detection proposed in [6] to initiate the tracking.

B. Training, Validation and Testing

Data batches are generated from CTCAOS dataset and
CTCA13 dataset. Cross-validation is used to estimate how
accurately the predictive model will perform in practice.

V. RESULTS AND DISCUSSIONS

A. Predicted Centerlines visualization

The reference centerlines and the respective predicted
centerlines of one example of CTCAOS8 dataset are plotted in
Figure 2. We verified that it actually predicts more correct
arteries than the reference, shown in Figure 2 (right image). In
CTCAO08, we will use 6 subjects in training, 1 in validation
and 1 in testing. All CTCA13 data are used in training.

Figure 2. The reference centerlines (left) and the predicted results (right)

B. Evaluation Measures
Centerline extraction performance is evaluated using the
following three metrics [11].

Overlap (OV): Overlap between a tracked coronary artery
centerline and a manually annotated centerline.

Overlap until first error (OF): Before an error occurs, how
much of a coronary artery centerline has been extracted
accurately.

Overlap with the clinically relevant part of the vessel (OT):
Overlap between a tracked coronary artery centerline and a
manually annotated centerline whose vessels are both
clinically relevant. A segment of a vessel is clinically relevant
if its diameter is larger than or equal to 1.5 mm.

C. Results

The results for centerline extraction using CTCAO08 dataset
with radius information are shown in Figure 3, which includes
average OV, OF, and OT over each dataset. The average OV,
OF and OT of all the vessels from CTCAOS dataset are
0.8104, 0.6002, and 0.8193 respectively.

EQV mOF mOT

0.73682077
0.67487839
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Figure 3. Average OV, OF, and OT of each dataset trained with CTCA08

dataset with radius information

Ideal OV, OF or OT is 1 for perfect tracking. Many of the
above results showed good performance with the metrics more
than 0.90. However, for some data, the OV, OF and OT values
are much smaller than one. Main reasons for the low accuracy
are as follows.

1. The CT scan has poor image quality due to motion. The
CT images at arteries may also not be enhanced properly.

2. The intensity of veins and arteries in CT images can be
close and, in some subjects, the veins can be very near to
arteries, which is leading to erroneous tracking.

3. For some datasets, there are many soft and calcified
plaques on the arteries.

4. The training datasets are limited.

The results for centerline extraction trained using CTCA08
Dataset with raidus information and augmented with
CTCA13 Dataset without radius inforamtion are shown in
Figure 4. The average OV, OF and OT of all the vessels from
CTCAOS dataset are 0.9108, 0.7611, and 0.9052 respectively.
Compared to the results using only CTCAO08 dataset, the
average OV, OF and OT have been improved by 10%, 16%,
and 8.6%.

To compare the accuracy of centerline extraction with and
without radius information, the results for centerline
extraction using CTCAO08 Dataset and CTCA13 Dataset both
without radius information are shown in Figure 5. The
average OV, OF and OT of all the vessels from CTCAO08
dataset are 0.8100, 0.6025, and 0.8494 respectively. The total
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mean results for OV and OF are close to the trained model
using CTCAO08, while we see 3% increase in OT.

EOV mOF mOT
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Figure 4. Average OV, OF, and OT of each dataset trained with CTCA08
dataset with radius information and CTCA13 dataset without radius
information
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Figure 5. Average OV, OF, and OT of each dataset trained with CTCA08
dataset and CTCA 13 dataset both without radius information

D. Discussions

The average OV, OF and OT over all testing datasets using
the above three types of augmentations are shown in Figure 6.
It is obvious that for each evaluation metrics, the training with
the small dataset with centerlines and full radius information,
and augmented with the additional partially labelled larger
data achieved the best performance, with nearly 10% or more
increases over the original method on the limited data. With
more data, even with partial labels, we can still see 3%
improvement in one of the metrics while maintain the similar
performance for the other two evaluation measures, compared
to the model using a small dataset with full labels.

0.81038112
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0.910784889
0.76108659
0.90516653
0.809994459
0.84937194

mov

0.60021695
0.602460632
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Figure 6. Result Comparison on models trained with different datasets and
augmentations

VI. CONCLUSION

In this paper, we proposed to augment with partially
labeled data for centerline tracking. Fully labeled dataset has
both centerline and radius information. Partially labeled
dataset has only centerline. Two radii were proposed here for
data preparation, one is for the direction estimation and the
other smaller radius was proposed to sample additional valid
patches for training.

The first experiment used a fully labeled dataset with
direction and radius information. The second training used a
fully labeled dataset augmented with a partially labeled
dataset. To compare the accuracy of centerline extraction
with and without radius information, the third training used
both datasets but without the exact radius information.

Experiments showed that the model trained on the limited
fully labeled dataset and additional data with partial labeling
(a simple CorNN) has much higher prediction performance,
compared to the original (CorNN) method using the limited
fully labeled dataset. While the model trained on the two
datasets but with only partial labeling can still outperform the
first model which was trained on the limited fully labeled
data.
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