
  

  

Abstract— Coronary artery disease (CAD) is an important 
cause of morbidity and mortality. CT coronary angiography is 
considered as first-line of investigation in patients suspected of 
having CAD. Coronary artery centerline extraction is a 
challenging prerequisite for coronary artery stenosis evaluation. 
These challenges include the small and complex structure, 
variation of plaques and imaging noise. Deep learning methods 
often require adequate annotated data to build a good model. 
This work aims to adopt a dataset that has partial annotation to 
augment the data to train a Coronary Neural Network (CorNN) 
to track the coronary artery centerline. We combined a small 
training dataset with densely labelled centerline and radius, 
augmented with a larger dataset with only the centerline 
sparsely labelled to train networks to track centerlines from 3D 
computed tomography coronary angiography. The vessel 
orientation estimation is patch based, with or without additional 
radius prediction. The patch data are carefully positioned and 
sampled, which are tagged with the orientations computed 
based on the centerlines. Our experiment results show that, with 
the augmentation of the new data, although partially annotated, 
nearly 10% or more improvement has been achieved for the 
coronary artery extraction by the proposed approach.  

I. INTRODUCTION 

According to the World Health Organization, 17.5 million 
lives are taken each year by CVDs (Cardiovascular diseases), 
an estimated 31% of all deaths worldwide [1]. Coronary artery 
disease (CAD), the most common type of CVD, is the 
narrowing or blockage of coronary arteries. The cause of CAD 
is the plaque deposited in the walls of coronary arteries. The 
buildup of plaque reduces the supply of blood or in some cases 
block blood flow to heart muscles, which leads to heart attack 
and even heart failure [2]. 

For patients suspected of having CAD, computed 
tomography coronary angiography (CTCA) can be used to 
examine and evaluate the severity of coronary stenosis. 
However manual coronary artery tree extraction is not only 
time-consuming but also skill demanding. Therefore, 
researchers developed (semi-) automatic approaches that can 
minimize the user interaction. In [3], Tek et al proposed a 
graph-based algorithm that used a multi-scale medialness 
filters and minimum-path algorithm to compute the tree of 
coronary artery centerlines. The algorithm could lead to short 
false positive section and leak to veins. Other conventional 
methods proposed include semi-automatic or fully automatic 
methods as summarized in [4], by region growing, fitted shape 
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and model, tube detection, connectedness tree algorithm, and 
minimum path approaches. In [5], Yang et al proposed a 
method based on improved vesselness filter. An interesting 
idea is to use rays casted to a sphere to describe the geometric 
features. 

Wolterink et al [6] proposed a deep learning-based 
approach to centerline extraction. The method trained a 
convolutional neural network (CNN) to predict the direction 
and radius of coronary artery centerlines. With ostia and 
candidate centerline seed point detection, fully automatic 
coronary artery centerlines can be extracted. No hand-crafted 
filter or appearance feature is needed. However, this method 
requires the training datasets with good labels of centerlines 
and the radius, not only for the radius estimation but also for 
guidance to process the training data to obtain the ground truth 
of the orientations. We adopted the networks and used data 
augmentation for the task by tracking the centerline only 
without the radius estimation. As a result, we improve the 
tracking accuracy by leveraging on a larger dataset without the 
tedious radius labeling on the centerlines by a simple CorNN.  

II. RELATED WORKS 

A. Minimal Cost Path (MCP) 
Many past works are based on Minimal Cost Path (MCP) 

method e.g. the work in [7], which is based on two manually 
selected points along the coronary artery, and a minimal cost 
on a path between two predefined points on each centerline. 
However, MCP is easily affected by other short-cut paths 
between points. 

B. 3D segmentation approach 
The type of methods obtains the tree of coronary arteries 

using lumen segmentation first, and extract the centerlines 
following the segmentation of vessel [8]. This method needs 
to have a segmentation model [9]. It is time-consuming 
because the lumen segmentation is done in the full 3D CT if no 
special preprocessing is applied to limit the searching space. 

III. METHOD 

A.  CNN for Direction and Radius Prediction  
The original CorNN predicts the direction and radius of an 

input vessel patch [6]. The output consists of 500 channels 
corresponding to all the possible 500 directions and 1 channel 
for radius. The determination of direction becomes a problem 
of classification instead of regression, while the determination 
of radius is a regression problem. The architecture of this 
network is shown in Table I. 

B.  CNN for Direction Prediction only  
For weakly annotated data, we have only the centerlines 

without the radius. Thus, the network can predict only the 
directions of the centerline given a patch around a centerline 
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mean results for OV and OF are close to the trained model 
using CTCA08, while we see 3% increase in OT. 

 
Figure 4.  Average OV, OF, and OT of each dataset trained with CTCA08 

dataset with radius information and CTCA13 dataset without radius 
information  

 

Figure 5.  Average OV, OF, and OT of each dataset trained with CTCA08 
dataset and CTCA13 dataset both without radius information  

D. Discussions  
The average OV, OF and OT over all testing datasets using 

the above three types of augmentations are shown in Figure 6. 
It is obvious that for each evaluation metrics, the training with 
the small dataset with centerlines and full radius information, 
and augmented with the additional partially labelled larger 
data achieved the best performance, with nearly 10% or more 
increases over the original method on the limited data.  With 
more data, even with partial labels, we can still see 3% 
improvement in one of the metrics while maintain the similar 
performance for the other two evaluation measures, compared 
to the model using a small dataset with full labels. 

 

Figure 6.  Result Comparison on models trained with different datasets and 
augmentations 

VI. CONCLUSION 
In this paper, we proposed to augment with partially 

labeled data for centerline tracking. Fully labeled dataset has 
both centerline and radius information. Partially labeled 
dataset has only centerline. Two radii were proposed here for 
data preparation, one is for the direction estimation and the 
other smaller radius was proposed to sample additional valid 
patches for training.  

The first experiment used a fully labeled dataset with 
direction and radius information. The second training used a 
fully labeled dataset augmented with a partially labeled 
dataset. To compare the accuracy of centerline extraction 
with and without radius information, the third training used 
both datasets but without the exact radius information.  

Experiments showed that the model trained on the limited 
fully labeled dataset and additional data with partial labeling 
(a simple CorNN) has much higher prediction performance, 
compared to the original (CorNN) method using the limited 
fully labeled dataset. While the model trained on the two 
datasets but with only partial labeling can still outperform the 
first model which was trained on the limited fully labeled 
data. 
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