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Abstract— Cough is one of the most common symptoms of
COVID-19. It is easily recorded using a smartphone for further
analysis. This makes it a great way to track and possibly
identify patients with COVID. In this paper, we present a deep
learning-based algorithm to identify whether a patient’s audio
recording contains a cough for subsequent COVID screening.
More generally, cough identification is valuable for the remote
monitoring and tracking of infections and chronic conditions.
Our algorithm is validated on our novel dataset in which
COVID-19 patients were instructed to volunteer natural coughs.
The validation dataset consists of real patient cough and no
cough audio. It was supplemented by files without cough
from publicly available datasets that had cough-like sounds
including: throat clearing, snoring, etc. Our algorithm had
an area under receiver operating characteristic curve statistic
of 0.977 on a validation set when making a cough/no cough
determination. The specificity and sensitivity of the model on
a reserved test set, at a threshold set by the validation set, was
0.845 and 0.976. This algorithm serves as a fundamental step
in a larger cascading process to monitor, extract, and analyze
COVID-19 patient coughs to detect the patient’s health status,
symptoms, and potential for deterioration.

I. INTRODUCTION

Coronavirus 2019 (COVID-19) has fundamentally altered
our world. The way in which this highly infectious virus
manifests is variable from patient to patient; however, one of
the most common symptoms, present in over half of patients,
is cough [1]. The commonness of cough, and the ease with
which cough is recorded has prompted researchers to collect
audio data in the hopes that it can be used to construct models
to rapidly identify the presence of COVID-19 in patients.
Such models would allow for patients to be more quickly
tested and more easily remotely monitored as the society at
large begins the process of reopening.

Models have already been developed from crowd-sourced
data in which study participants provided forced coughs and
self-reported their COVID-19 status via smartphone applica-
tions and web-based browsers (e.g. [2]–[4]). These papers
achieve high area under receiver operating characteristic
(ROC) curve statistics, particularly for people who indicate
that they are not making a self-diagnosis but received a
COVID-19 test. Certain models show a high true positive
rate even in cases of asymptotic COVID-19 patients [3].

Researchers have also used these data to construct and
validate models that identify if participants provided a cough
or no cough audio [2]. There is an extensive body of literature
on automated cough extraction from audio that is recorded
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using widely available smartphone microphones in various
environments that shows high accuracy [5].

These apps differ from what is discussed below for a cou-
ple of reasons. Previous solutions for COVID-19 patients are
crowd sourced and little can be verified about contributing
participants (e.g. [2]). In some other cases, coughs are not
from COVID-19 patients at all (e.g. [5]). Finally, the coughs
collected from COVID-19 patients were often instructed to
be forced rather than natural. Different types of coughs may
encode different information about the patient.

This paper is the first step in a larger effort to extract cough
from audio and use these data, potentially in conjunction
with other data, to detect a patient’s health status as well
as monitor for and predict patient deterioration (see also:
[6]). This work is valuable beyond tracking COVID-19
patients. Identifying cough using audio allows for more
precise extraction and additional analysis that can help track
infections and remotely monitor chronic conditions.

This particular undertaking is spurred by the use of
Biofourmis’ Biovitals Sentinel platform and patient applica-
tion for the remote monitoring of COVID-19 patients [7].
An array of health parameters from COVID-19 patients
have been gathered at sites around the world using this
multifaceted platform. This work focuses on one piece of
analyzing the volunteered coughs provided by these patients
using the patient’s smartphone application. This algorithm
decides whether or not the patient has provided a cough in a
recorded audio file and could prompt the patient to provide
a more distinguishable cough if no cough was provided.

The following section describes the full data gathering
process along with how a cough classification algorithm that
is robust to background noise was developed and validated.
The subsequent section presents the results of the validation
work. Finally, the discussion details the importance of and
need for this algorithm in remote COVID-patient monitoring
as well as potential future directions for how this algorithm
can be used different contexts.

II. METHODOLOGY

The objective of our cough classification algorithm is to
determine whether or not the patient has provided at least a
single cough in an audio file recorded by their smartphone
to allow for additional analysis to take place in the case a
cough has been provided. The first step is to gather data
for the training and validation of this model. The following
section describes the collection of a novel dataset containing
coughs from COVID-19 patients [7].
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A. Biovitals® Sentinel Platform - Data Collection

Biovitals® Sentinel (Biofourmis Inc, Boston, USA), a
remote monitoring solution, has been deployed in countries
across the world including: Singapore, Hong Kong, the
United States, Australia, and the United Kingdom to help
monitor patients who caregivers suspected to be suffering
from COVID-19 or had confirmed COVID-19 [8]. This
solution compiles both continuous and episodic data streams
from these patients. There is continuous data available from
the Everion device1, which monitors numerous biomarkers
including: typical vital signs, patient movement, e.g. steps,
and derived measures of health and activity. In addition, there
were episodic measurements taken by an attending caregiver,
including, weight, blood pressure and temperature. Finally,
there were episodic measures provided by a patient-facing
smartphone application. During onboarding patients were
given an introduction about how to use the application.

Using the patient-facing smartphone application, patients
were able to provide their present symptoms, such as sore
throat, cough, etc. They completed quality of life measures
and recorded their coughs using the smartphone application.
The application explicitly instructed patients to provide their
coughs only if they were natural and not to force these
coughs. This warning was given before every recording.

B. Datasets’ split and annotations

The gathered cough data to validate our algorithm was
manually scored by three researchers using the process
enumerated below. Each patient provided audio file was
coded as having a cough, no cough or exclude.

1) Two researchers independently indicated whether there
was a cough in the file, there was not a cough in the
file or they were not sure.

2) A third independent researcher listened to each of the
files on which the first two scorers disagreed; the third
scorer provided a cough, no cough, unsure rating.

3) If all three scorers disagreed, then the file was marked
to be excluded. If at least two coders agreed, then
that became the rating for the file (cough, no cough
or unsure).

4) The original scorers made a forced cough, no cough
choice on the files for which they were unsure.

5) In this case, if there was disagreement, the file was
excluded. In the case of agreement, the file was given
the agreed upon designation (cough or no cough)

The result of the data gathering and generation process
was 181 files provided by 53 COVID-19 patients:

• 168 Cough Files
• 13 No Cough Files
The COVID patient cohort files are anticipated to have

cough in most recordings due to the inherent study de-
sign and instructions for use targeted to capture natural
spontaneous coughs in COVID patients that serve as true
positives. This cough skewed in-house data, however, would

1support.biofourmis.com/hc/en-us/categories/201377109-Everion-Device

not be sufficient enough to train algorithms to automatically
recognize the coughs. This is a nontrivial task as shown by
Fig. 1, which compares the waveforms and mel-frequency
spectrograms of a COVID patients coughing to just a handful
of non-cough sounds. Therefore, publicly available audio
recordings have been included for the algorithm training
and evaluation. The additional data included: ESC-50 [9],
DCASE2016 [10], and Coswara [11], as well as public
domain audio sources.

The researchers extracted and manually verified a subset of
examples of cough and no cough files from these datasets and
certain public domain audio websites for training, validation
and testing purposes. The training set consisted of cough and
no cough audio from numerous audio sources to ensure that
the algorithm was learning features to differentiate cough and
no cough, not differentiating audio sources.

The coughs in many of the publicly available datasets are
very clean (minimal background noise) which could be far
from real life recordings. Patients provided coughs in very
different environments, sometimes these environments were
very noisy. In order to make our algorithm more robust
to noise, we up sampled the coughs in our training set
by mixing the clean cough audio with audio of different
background conversations, different music types, etc.

This up sampling procedure consisted of randomly select-
ing a subset of clean coughs from the publicly available
cough audio in the training set. Segments of no cough files
containing conversations and music of the length of the
selected cough file were selected. The overlay function from
Python’s AudioSegment module2 mixed the cough with no
background noise audio with the audio from the files that did
not have cough at one of three specified gains to simulate
low, medium, and high noise environments.

Forty cough and forty no cough files were reserved to
serve as a small validation set. This validation set was used to
set the model’s decision boundary before testing on reserved
test set. The rest of the data was used to train the model. The
number of files from each source in the training, validation
and testing sets are given in Table 1.

C. DNN Cough Classifier Architecture

We used a sound event detection model to automatically
extract features as input for our model (see [12]). The sound
event detection model is precompiled and automatically
extracts 1024 features that have been shown to meaningfully
separate hundreds of different sounds, including cough, using
a convolution neural network architecture. This architecture
divides an audio file into segments. Mel-frequency spectro-
grams, visual representations of the frequency composition of
these segments, are derived for each segment. These images
are then passed through an extensive series of convolutional
and max pooling neural network layers. The output of the
final convolutional layer is 1024 output channels for each
segment. These segment-level outputs are then combined
into an audio file level output via averaging or taking the

2https://pypi.org/project/audiosegment/
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Fig. 1. Representative examples of cough (1st column) and non-cough (2nd and 3rd columns) audio recordings and their respective mel-frequency
spectrograms illustrate unique time-frequency compositions and time-varying signal dynamics. Though the current datasets involve variety of non-cough
sound recordings, a few non-cough sounds such as clearing throat, counting, sneezing and music are illustrated to showcase certain degree of resemblance
and striking background noise that presents the challenge to the classification problem.

Fig. 2. The proposed deep neural network architecture consisting of an input layer of automatically extracted 1024 feature nodes, two hidden layers each
of 64 ReLU nodes and an output layer for identifying cough versus no cough nodes, where all layers are fully connected.
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TABLE I
TRAINING, VALIDATION AND TESTING SET SOURCES

File Type # Cough Files # No Cough Files
Training Set

In-House Dataset 44 4
ESC-50 40 700

DCASE2016 20 140
Coswara 512 130

Public Domain 40 157
Engineered Cough+Noise 600 0

Total 1256 1131
Validation Set

In-House Dataset 40 3
ESC-50 0 14

DCASE2016 0 7
Coswara 0 11

Public Domain 0 5
Total 40 40

Testing Set
In-House Dataset 84 6

ESC-50 0 36
DCASE2016 0 18

Coswara 0 24
Total 84 84

maximum value. Convolutional neural network architectures
have been shown to be superior to deep neural networks on
certain tasks, including audio processing (see: [13], [14]).

Part of the work presented in the sound event detection
model paper [12] showed how a classifier for a targeted
task could be built on top of the automatically extracted
1024 features. Our model leverages this automated feature
extraction and builds a deep neural network (DNN) classifier
upon it. A deep neural network was employed because
our 1024 features were automatically extracted, and this
architecture exploits the tacit knowledge contained in these
features to make the appropriate classification. Our targeted
classification task is assessing whether or not a cough has
been provided in recorded patient audio.

The DNN classifier (architecture shown in Fig. 2) takes
as input the 1024 features automatically extracted from the
raw patient audio. The classifier has two fully connected
hidden layers of 64 nodes each which use rectified linear
unit (ReLu) activation. Finally, it has a dense output layer
with two nodes with softmax activation, the probabilities of
the file containing the cough or no cough. This classifier was
implemented in Keras3.

D. Cough Classifier Validation Process

When analyzing coughs, it is important to understand the
targeted population and cough type because these can change
the mechanisms that produce the cough and the cough sound
in important ways. Our targeted population was COVID-
19 patients who had been asked to self record spontaneous
coughs. This is a unique dataset gathered in COVID-19
patients using Biovitals® Sentinel Platform. Therefore, this
Sentinel dataset was equally split and reserved for testing
and training purposes.

Each training file had a label of cough or no cough. The
1024 features described above were derived for each of the

3https://keras.io

audio training files and were used to train our DNN classifier.
The process for generating the labels, the features and the
datasets are described above.

The algorithm to test the trained model made a single
cough/no cough prediction for each audio file in our val-
idation and reserved test sets. To do this, the algorithm
segmented the files into audio clips. The audio clips length
ranged from 1.5 seconds to the length of file. The audio
clip start times began at the beginning of the file with a
moving step size of one second. The algorithm computed
a probability of an audio clip having a cough for every
clip in the file using our trained model. The audio clips
included every combination of starting position and clip
length. The probability of the file containing cough was
the maximum probability computed from the different audio
clips extracted from that file. The maximum value was
chosen because certain files had lengthy periods of silences
in them, so average or median probabilities of cough in
the file may not have been informative. Further, as noted
above, this algorithm serves as input to additional algorithms
that process the audio and have the opportunity to rule out
noncough audio ( [6]). Therefore, the design of this algorithm
prioritized sensitivity.

III. RESULTS

Consider the problem of identifying coughs from audio
alone that is visualized in Figure 1. There are many com-
mon sounds: human, environmental, and synthetic that have
similarly shaped audio signals to cough. Even the frequency
decomposition of these signals do not seem to clearly
separate the sounds from cough. The deep neural network
architecture described above had to use the examples in the
training set to learn subtle differences between cough and no
cough raw audio signals and Mel-frequency spectrograms to
successfully stratify them.

This learned model was then applied to a balanced repre-
sented validation set that was described above. The AUROC
for the model on the validation set was 0.977. The ROC
curve is shown in Fig. 3. The area under the precision and
recall curve for the validation set is 0.978. This curve is
shown in Fig. 4. This validation set was used to assess the
optimal threshold when testing on our reserved test set.

The results for our cough identification model on this test
set are summarized in Table 2.

The threshold determined by the validation set was the
threshold for which the product of the specificity and sen-
sitivity was highest on our validation set. This threshold
was then applied to the probabilities generated by the model
for the test set. The prediction algorithm correctly identi-
fied 84.5% true negatives (no cough files) and 97.6% true
positives (cough files).

We also computed the statistics for the optimal threshold
for the test set (the threshold which maximized the product
of specificity and sensitivity on the reserved test set). The
sensitivity, specificity and precision were all at or above
0.929.
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Fig. 3. ROC curve for the validation set. AUROC = 0.977

Fig. 4. Precision and recall curve for the validation set. AUPRC = 0.978

Our model’s high precision and recall indicate a model that
would perform well in real world settings. When a patient
provides a cough in an audio recording, this model has a
very high chance of recognizing an audio file with cough.
The algorithm also can rule out a lot of audio in which the
patient does not cough. Our test set consisted of many noises
that could easily be confused as cough (e.g. throat clearing).

These results are important. This algorithm allows for
additional processing to be done on the cough audio data
under the assumption that the file being processed likely has a
cough in it because of the low false positive rate. Subsequent
algorithms analyzing the audio can be more precise in
identifying conditions or physical qualities associated with
cough when fed coughs only compared to algorithms fed a
lot of confounding audio. The high true positive rate ensures
that patient provided coughs are analyzed.

IV. DISCUSSION

We introduced an algorithm to identify whether or not
COVID-19 patients provided a spontaneous cough using their
smartphone application. The algorithm makes use of 1024
automatically derived features from a sound event detection
CNN model that have been shown to successful separate
hundreds of environmental sounds in previous work [12].

TABLE II
PERFORMANCE METRICS FOR TRAINED COUGH IDENTIFICATION

ALGORITHM ON RESERVED TEST SET.

Threshold Statistic Type Value

Determined by Validation Set
Precision 0.863

Specificity 0.845
Sensitivity 0.976

Optimal
Precision 0.940

Specificity 0.940
Sensitivity 0.929

These features act as input to a new DNN classifier which
was trained on our unique and carefully curated dataset.

The coughs in this test set were provided by patients
who had confirmed COVID-19 patients or those suspected
by professional caregivers. Patients were instructed to only
provide natural coughs and not to force coughs. These factors
make what was tested here unique from previous work; the
previous work often was not done on confirmed COVID-19
patients and had patients forcing cough.

In a remote patient monitoring setting, this algorithm
is important and necessary for a couple of reasons. First,
it provides insights into whether patients are appropriately
engaging with the patient-facing application and providing
the data that are necessary to monitor their health statuses.
If a patient is not providing cough, but providing lots
of recordings, the patient may need assistance using the
application. If the patient is not providing recordings, the
patient may also need a caregiver to check in.

If the patient is not providing a cough, then additional
computational resources should not be taken to perform
additional processing, e.g. removing noise from the audio,
extracting a cough, etc. This is the first step in a larger
effort to use patient coughs as one of many potential ways to
remotely monitor COVID-19 patients. This first step showed
how in the presence of noise, when contending with cough-
like no cough sounds, an automated algorithm could identify
with high accuracy when a remotely monitored COVID-19
patient had provided cough audio.

Once a cough has been identified by this algorithm, noise
from the audio must be removed and the cough must be
extracted. The algorithm to carryout this extraction has
been completed and validated (see [6]). Subsequently, the
cough audio can be analyzed for the purposes of diagnosis,
concurring symptom prediction, deterioration prediction, etc.

This paper presented an already widely distributed re-
mote patient monitoring system that is gathering a new
type of data. Patients’ coughs were gathered along with
numerous other self-reported and automatically monitored
health parameters. Patients were explicitly told to provide
natural coughs, which encode different information than
forced coughs. This new data, which we have shown coughs
can reliably be identified in, may reveal new biomarkers for
symptoms or deterioration in COVID-19 patients.

Coughs can be differentiated by whether they are reflexive
due to an environmental stimulus, natural due to an under-
lying infection, or forced; these different types of coughs
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activate different musculature and make different sounds
[15].Beyond the cough type, studies have shown how cough
sound, even reflexive cough sounds, can be changed through
volitional control [16]. The method by which the cough is
collected and the cough type must be considered in order
to improve robustness of preceding algorithms and develop
new algorithms. These factors change the model and could
reveal different information about the patient.

As society begins to return to a new normal, caregivers
must be vigilant about understanding who has COVID-
19 or one of its many variants and limiting exposure to
those patients while simultaneously providing them support.
COVID-19 has highlighted the need for telemedicine in our
healthcare systems. It affords a more cost effective and in
many cases safer means for many patient-client interactions.

A remote patient monitoring (RPM) platform affords this
opportunity. Patients can record their spontaneous coughs,
voice, symptoms; they also can be tracked by wearable
devices. This will allow caregivers to understand and monitor
the patient’s health status without the need to be physically
present with the patient risking the opportunity for infection.
This paper introduced a unique RPM that provides this
coverage and is unique within the COVID-19 research space.

The algorithm introduced as part of this paper provides the
opportunity to recognize when the patient is spontaneously
coughing. The algorithms described in our concurrent sub-
mission [6] provide the opportunity for the extraction and
analysis of cough to detect the presence of COVID-19. This
can help caregivers monitor the patient to ensure patient
illness is caught as early as possible and monitored as closely
as possible, so caregivers are able to provide the optimal
care for the patient and patients are able to limit exposure
to others. The proposed remote patient monitoring solution
is an important opportunity to help in the world’s return to
the new normal.
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