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Abstract— Treating acute ischemic stroke (AIS) patients is a
time-sensitive endeavor, as therapies target areas experiencing
ischemia to prevent irreversible damage to brain tissue. Depend-
ing on how an AIS is progressing, thrombolytics such as tissue-
plasminogen activator (tPA) may be administered within a short
therapeutic window. The underlying conditions for optimal
treatment are varied. While previous clinical guidelines only
permitted tPA to be administered to patients with a known onset
within 4.5 hours, clinical trials demonstrated that patients with
signal intensity differences between diffusion-weighted imaging
(DWI) and fluid-attenuated inversion recovery (FLAIR) se-
quences in an MRI study can benefit from thrombolytic therapy.
This intensity difference, known as DWI-FLAIR mismatch,
is prone to high inter-reader variability. Thus, a paradigm
exists where onset time serves as a weak proxy for DWI-
FLAIR mismatch. In this study, we sought to detect DWI-
FLAIR mismatch in an automated fashion, and we compared
this to assessments done by three expert neuroradiologists. Our
approach involved training a deep learning model on MRI to
classify tissue clock and leveraging time clock as a weak proxy
label to supplement training in a semi-supervised learning (SSL)
framework. We evaluate our deep learning model by testing it
on an unseen dataset from an external institution. In total, our
proposed framework was able to improve detection of DWI-
FLAIR mismatch, achieving a top ROC-AUC of 74.30%. Our
study illustrated that incorporating clinical proxy information
into SSL can improve model optimization by increasing the
fidelity of unlabeled samples included in the training process.
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I. INTRODUCTION

Stroke remains a leading cause of long-term disability;
acute ischemic stroke (AIS) accounts for 87% of the 795,000
strokes that are diagnosed each year. [1] For ischemic stroke
patients, treatments such as thrombolysis and thrombectomy
aim to restore blood flow to areas experiencing ischemia.
Successful intervention for both treatments is contingent
upon many clinical factors. Thrombolytics reperfuse tissue
that is experiencing ischemia but that is not yet infarcted.
Until recently, thrombolysis was only recommended for
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patients meeting certain clinical criteria and with a known
symptom onset within 4.5 hours. [2] As many as 35% of
patients were deemed ineligible for this treatment due to
unknown time since stroke (TSS). [3] However, the recent
WAKEUP clinical trial provided a new avenue for patients
to receive thrombolytic treatment. [4] Using MR imaging,
a neuroradiologist may assess differences in signal between
diffusion-weighted imaging (DWI) and fluid-attenuated in-
version recovery (FLAIR) series when TSS is unknown. [5]
Several clinical trials have illustrated that ischemic tissue is
visible almost immediately after stroke onset, in contrast to
ischemic tissue appearing several hours after onset on FLAIR
imaging. [6] The most recent version of the American Heart
Association guidelines for treating acute stroke assert that,
for patients with unclear time of symptom onset, MRI can be
performed to identify areas with DWI-FLAIR mismatch that
could benefit from thrombolytic treatment. [7] This can offer
another therapeutic avenue for these patients; however, this
assessment is prone to a large amount of reader variability.
[6] Some semi-automated quantitative methods have been de-
veloped to determine DWI-FLAIR mismatch, but threshold-
based methods may not be reliable on multi-institutional
datasets due to differences in MR acquisition protocols.
[8] An automated method to detect this observation could
help clinicians in the decision to offer thrombolysis. These
techniques can parallel previous approaches to automatically
determine lesion age by classifying the time since stroke
onset. [9]–[11]

Deep learning can leverage medical images to automati-
cally classify signal differences; one primary challenge with
this approach is that acquiring high-quality annotations is
costly to implement at a large scale, as it requires assess-
ments from multiple domain experts. Approaches to tackle
classification tasks with manually intensive labels aim to
address small sample size. [12] Semi-supervised learning
(SSL), for example, has been explored widely across multiple
medical domains by assigning pseudolabels to unlabeled
datasets, and incorporating them into the training dataset.
[13] This carries the risk of confirmation bias, that is,
incorrectly assigning pseudolabels and therefore influencing
the loss function to optimize to the incorrect minimum. [14]
Another commonly-utilized approach is weakly-supervised
learning, whereby samples with unverified labels are eval-
uated for their proximity to the fully-annotated label. [15]
In this work, we propose an automatic, semi-supervised
framework that jointly learns from fully and weakly labeled
samples. Our framework performs label inference on a large
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dataset by leveraging weak proxy information. In addition
to the implementation of established regularization methods,
we evaluate the utility of proxy labels to inform sample
selection from a set of weakly labeled data. We evaluate
this framework using our previously-published deep learn-
ing backbone for stroke images, and we do so by testing
classification performance on a separate validation dataset
from an external institution.

II. METHODS

A. Dataset

The data used for this study comprised patient MR
imaging studies from two institutions, all of which were
diffusion-weighted. Our preprocessing protocol for image
series involved skull stripping, N4-bias field correction, reg-
istration to an anatomical atlas, intensity normalization, and
histogram matching. [16] Each neuroradiologist performed
assessments independently and in the same order; the DWI-
FLAIR mismatch label was determined by a majority vote.
The development dataset was drawn from the existing UCLA
Health stroke registry. This cohort contains 417 patients
from 2011-2019 who underwent diffusion-weighted MRI
with a known TSS. For external validation, we used a cohort
from Asan Medical Center (AMC) totaling 355 patients.
[11] All of these patients have a known TSS; in addition,
three neuroradiologists performed DWI-FLAIR mismatch
assessments for 72 and 55 patients from the UCLA and
AMC datasets, respectively. Patient records were collected
in accordance with respective IRB approval and HIPAA
compliance standards. Informed consent was waived via the
exemption for retrospective data.

B. Problem Formulation

Our dataset contained two labels: time clock (TSS) and
tissue clock (DWI-FLAIR mismatch). One the one hand, TSS
is available for all patients in both datasets, but it serves as
an imperfect proxy for the the underlying tissue changes that
create ischemic tissue that has not yet experienced infarc-
tion. Conversely, DWI-FLAIR mismatch serves as a better
approximation of salvageable tissue targeted by thrombolytic
treatments, but it is manually intensive to generate these
labels across the entire dataset, and it is prone to inter-reader
variability. Thus, we will consider TSS as a weak proxy label,
and DWI-FLAIR mismatch as a full label. Each fully-labeled
patient can be categorized as one of the following:

Weak Proxy 1, Target 1 (Clean)

Weak Proxy 1, Target 0 (Noisy)

Weak Proxy 0, Target 1 (Noisy)

Weak Proxy 0, Target 0 (Clean)

We will consider X as the total set of samples that are
available for our semi-supervised framework. Within this,
there are two subsets: XF , which are fully labeled samples,
and XW , which are samples that only have the weak label.
For this study, we can assume that each sample in XF has
both the weak proxy and manually-acquired full label.

C. Classification Models
Our framework utilized two models that were trained in

a decoupled fashion. The first was a deep learning model
gθ → Rd → P that served as both a feature extractor and
target label classifier, where Rd represents extracted features
and P indicates the final binary classification for the target
variable. The convolutional backbone was based on ResNet-
18, as that was determined to be the optimal architecture
from previous stroke MRI classification studies.

The second model was a discriminator DS → L that
classified samples based on the relationship between their
weak proxy and target labels. That is, the model determined
a sample’s likelihood that the weak proxy matched the target.
The model took features extracted from gθ as input and
computed cosine similarity to those features extracted for
each of the four data categories outlined in II-B.

D. Label Refining Framework
Our framework consisted of two stages. In the first stage,

we trained our deep learning model. Once the deep learning
architecture was sufficiently trained, we froze the network
for it to serve as a feature extractor. In the second phase,
we extracted features for both XF and XW . Using these
extracted features, we trained DS to classify samples in XW

based on their cosine similarity to samples in XF . We then
used these classifications to infer labels for samples in XW

for which there was high confidence that the pseudolabel was
correct. In this respect, we only included samples for which
the weak proxy label for Xi

W matched the classification
determined by DS . These high-confidence samples were
then incorporated into the training set, and the process
iterates again starting at stage 1. Our framework algorithm
is depicted in Algorithm 1.

Algorithm 1: Proxy Learning Framework

for iter ∈ 1, 2, 3, ..., 10 do
X̂t = augment(Xt);
train gθ using X̂t

while gθ fixed do
extract features gθ → Rd
train DS

X̂w = sample(Xw)
for i ∈ X̂W do

Compute s(iii,CCC) = iii·CCC
||iii||·||CCC||

Assign cluster label Li = min(si, C)
if si > 0.5
& Lproxyi = iproxy then

if iter in early stage then
Li == ”Clean”

else
Li == ”Clean” | ”Noisy”

add Li to Xt
else

continue
test gθ on XE : gθ → Rd →PE
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E. Experiments
For all experiments, we used the same initial training set

XF , comprising 72 patients from UCLA with both proxy
and target labels. A total of 345 patients XW , all from
the UCLA Stroke dataset, were used as potential pseudo-
labeled data in the semi-supervised stage of training. All
models and experiments were tested on a set of patients XE ,
which comprised 56 patients from Asan Medical Center. For
the deep learning model gθ, hyperparameters were tuned in
accordance with previous experiments for this architecture.

We hypothesize that proxy information can supplement the
semi-supervised framework training process in the following
ways: using proxy labels to select weakly labeled samples
for inclusion in the training set, and incorporating samples
of varying noisiness at different training iterations. We com-
pared our proposed framework to a baseline, fully-supervised
network trained on fully-supervised samples alone. We also
compare to the current state-of-the-art in semi-supervised
learning, a method performed by Berthelot et al. that involves
consistency regularization on augmented samples. [17] To
test the effects of our proposed techniques, we also com-
pleted ablation studies for each methodological adaptation
implemented in our framework. The primary metric used
to perform this study was receiving-operator characteristic
(ROC) area under the curve (AUC), though we also report
detection sensitivity and specificity. Each model was run ten
times to report mean performance across metrics.

III. RESULTS

Our experimental results are summarized in 1 and Table
I. When tested on an unseen external validation dataset, our
semi-supervised framework was able to achieve an average
ROC-AUC of 74.30±1.9%. This model outperformed the
current state of the art in SSL for our DWI-FLAIR mismatch
detection task, and it also achieved the lowest variance when
run in replicate. Our ablation experiments illustrated that
both methods to utilize proxy information enhanced model
performance.

TABLE I
PERFORMANCE METRICS ACROSS EXPERIMENTS AND OUR PROPOSED

FRAMEWORK.

Model AUCa Sens.b Spec.c

Fully Supervised 64.36±6.63% 64.15±29.8% 45.16±27.7%

Baseline SSL 67.11±3.58% 60.97±14.53% 70.45±14.26%

+ Noise Selection 67.35±3.82% 70.65±11.13% 60.91±10.84%

+ Proxy Selection 70.82±3.52% 75.81±9.49% 61.36±8.92%

+ Our Model 74.30±1.9% 73.87±10.74% 69.08±8.81%

MixMatch 63.9±2.4% 72.4±5.4% 70.1±10.3%
aReceiving Operator Characteristic Area Under the Curve
aSensitivity aSpecificity

IV. DISCUSSION

Determining the age of an acute ischemic stroke lesion
is essential to informing stroke treatments. The relationship

Fig. 1. ROC Curves illustrating the average performance of our proposed
method alongside ablation experiments.

between time clock and tissue clock has been long studied,
identifying TSS as a surrogate proxy for the progression
of ischemic tissue. Clinical imaging has illustrated tissue
changes underlying this progression. Signal intensity dif-
ferences between DWI and FLAIR imaging were originally
proposed as a method to identify patients within 3 hours of
stroke onset. [6] More recently, it has also been incorporated
into stroke treatment guidelines, as the presence of DWI-
FLAIR mismatch can be used to give patients thrombolytics
when onset time is unknown. This imaging biomarker has
also been clinically correlated with better outcomes for other
stroke treatments such as mechanical thrombectomy. [18],
[19] Detecting DWI-FLAIR mismatch has two challenges:
it requires assessment by an expert neuroradiologist, and
it is an inherently subjective assessment prone to inter-
reader variability. [20] This proxy-target paradigm could be
extended to other medical tasks, where an easily-collected
clinical variable serves as a surrogate proxy for an underlying
label that requires expert annotation. [21] A common prob-
lem among medical tasks is labels are expensive to acquire,
leading to training on small datasets with questionable gener-
alization when evaluated solely on data from one institution.
One way to address this is by evaluating generalizabilty using
an unseen, external dataset.

Many areas of machine learning research have explored
methods to incorporate prior knowledge into their models, as
this can be particularly informative for medical detection and
segmentation tasks. Our approach utilizes prior information
in a semi-supervised framework in two ways: to stratify unla-
beled examples into clinically meaningful categories, and to
classify samples according to the level of noise. Both of these
methods have the goal of enhancing confidence in pseudo-
labeled samples. Combining these two strategies yielded
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both higher detection performance and lower variability
across replicates, the latter addressing instability of machine
learning models trained on small datasets. Moreover, our
proposed method outperformed the current state of the art
in semi-supervised learning, which involves calculating the
consistency of predictions on augmented samples. The image
registration pipeline creates spatially aligned images such
that stroke location is information contained within the
image. The types of augmentation used in natural image
datasets, e.g., flipping, rotation, and translation, may be less
useful in a model where spatial location could be informative.
[22] Given that medical datasets, even without labels, are
often small, learning a good feature representation that is
reliant on data augmentation method may not be as effective.

Our study sought to leverage TSS as a surrogate to
detect DWI-FLAIR mismatch in MR imaging performed
on acute ischemic stroke patients. The experiments show
that proxy information used in a semi-supervised learn-
ing framework can enhance performance both in terms
of increasing classification accuracy and model stability.
Our study has a few limitations, namely the small sample
size for both the development and evaluation datasets, and
the small number of experts that generated the annotated
labels. Future research directions could include evaluating
this approach on a larger multi-institutional dataset, which
could enable stratification of patients by clinical factors such
as demographics and medical history. Clinical segmentation
of patient populations could elucidate clinical factors that
influence tissue progression during ischemic stroke. A wider
evaluation of this approach could produce a model capable
of automatically detecting DWI-FLAIR mismatch from MRI
taken at imaging, which could help inform treatment options
for AIS patients.
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