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Abstract— Myoelectric prosthesis users typically do not re-
ceive immediate feedback from their device. They must be able
to consistently produce distinct muscle activations in the ab-
sence of augmented feedback. In previous experiments, abstract
decoding has provided real-time visual feedback for closed loop
control. It is unclear if the performance in those experiments
was due to short-term adaptation or motor learning. To test
if similar performance could be reached without short-term
adaptation, we trained participants with a delayed feedback
paradigm. Feedback was delayed until after the ∼1.5 s trial
was completed. Three participants trained for five days in
their home environments, completing a cumulative total of
4920 trials. Participants became highly accurate while receiving
no real-time feedback of their control input. They were also
able to retain performance gains across days. This strongly
suggests that abstract decoding with delayed feedback facilitates
motor learning, enabling four class control without immediate
feedback.

I. INTRODUCTION

Myoelectric prostheses work by interpreting neural signals
sent from the central nervous systems (CNS) to remnant
muscles in the residual limb. User intent can be estimated
from recorded electromyographic (EMG) signals of muscle
activity, sensed non-invasively with electrodes placed on the
surface of the skin [1], [2]. This activity can then be mapped
to an output on a prosthetic device via a control scheme.

Abstract decoding is a control scheme motivated by motor
learning [3]. With this control scheme, users actively adapt
their myoelectric signals in such a way that is distinct from
the activations required to achieve the hand grasp naturally
[4]. Abstract decoding relies on the human nervous system’s
ability of performing a vast collection of motor tasks to
successfully learn the myoelectric interface such that, with
practice, control becomes second nature. As the CNS is
tasked with resolving the mapping between muscle activity
and prosthesis output, the complexity of motor learning-
based systems can be significantly reduced compared to
machine learning approaches. In fact, it has been shown that
several grasps could be restored based on normalized muscle
activity from only two electrodes [5]. These findings were
later validated in amputee subjects [6].
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The study of feedback scheduling during practice has been
present in neuroscience literature for decades [7], but its
effects have yet to be widely explored within the context
of myoelectric control. One existing hypothesis in motor
learning theory states that frequent feedback is beneficial
for correcting errors during the initial acquisition of a skill
but detrimental to long-term learning if relied upon [8]. It
is found that providing real-time feedback can yield more
rapid performance gains but ultimately suffers from a lack
of retention when feedback is withdrawn [8]. The process
responsible for this phenomenon is referred to as motor
adaptation. We use this term here how it is commonly used in
upper-limb prosthetics literature [9], [10]. It describes a tran-
sient response, sensitive to sensory prediction errors, which
iteratively adjusts movements to maximize task performance
[7], [11]. On the other hand, motor learning is a set of slower
processes which bring about relatively permanent changes
in behavior following the practice of a skilled task [11].
Limiting feedback can have the effect of facilitating motor
learning, which offers more stable retention of behavior over
time [12].

Until now, abstract decoding has provided real-time feed-
back of the user’s input during training [13], [5], [6]. This
raises the argument that observed changes may be attributed
to short-term adaptation, rather than motor learning. In pre-
vious experiments, short time-constrained trials and partial
limiting of feedback were used to limit the exposure to
adaptive processes [5]. However, it is still possible for
adaptation to act on the millisecond level. This implies that
previous results would have been affected by fast updates of
visual cues to generate compensatory motor commands. As a
result, participants would be reliant on the real-time feedback
as a source for this error signal. This is problematic when
considering that, in general, myoelectric prosthesis users only
receive noisy proprioceptive signals from their muscles and
augmented feedback from the prosthetic device moving in
response to their control signals [14], [4].

We trained participants without real-time feedback so that
no within-trial adaptation could take place. To isolate the
internal processes that facilitate motor learning, feedback
was presented only once control input had ceased. As motor
learning works on a relatively slower scale, we hypothesised
that multiple day training was required to observe any long-
term changes. As this training structure is difficult and
expensive to scale under laboratory conditions it is more
suited to take place in home environments.
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II. METHODS

A. Participants

Three participants (1 female, 2 male) were recruited. Each
had prior experience with the real-time feedback version
of the myoelectric task. All participants were able-bodied,
free from neurological or motor disorder, and gave informed
written consent. Ethical approval was granted by the local
committee at Newcastle University (Ref: 20-DYS-050).

B. Experimental setup

Sensors 1 and 2 were placed over the extensor carpi
radialis and flexor carpi radialis muscles, and were used for
controlling the task. Signals were acquired at 500 Hz. To
ensure the recording sites were consistent over multiple days,
the location of each sensor was marked on the arm.

C. Calibration

The calibration routine collected data representative of
baseline and contraction activity during either arm flexion
or extension for each sensor. Contraction intensity was set
such that it was deemed comfortable and repeatable for long
periods of time. Activity was smoothed by computing the
mean absolute value over a 760 ms window with an update
rate of 20 ms. Normalization values were set at rest and
activation during dynamic movement.

Participants had the option to set their own EMG calibra-
tion at the start of every session. After the EMG calibration
was established, subsequent sessions used the previous nor-
malization values. Participants carried out the task with their
elbow flexed at 90◦ and were instructed to keep their wrist
in the neutral position.

D. Experimental protocol

The task involved moving a cursor within a 2-dimensional,
four target, myoelectric-controlled interface (MCI) (Fig. 1a).
The cursor’s position on the interface is altered by muscle
activity from the two control channels. The amplitude of
the activity sensed by each sensor determines the cursor’s
position along a single axis. Varying levels of co-contraction
were necessary to reach the two central targets. The experi-
mental protocol was written in Python and used the AxoPy
library [15]. Home testing was enabled through the system
described in [16].

Trials began once the participant was in the rest state,
corresponding with the cursor being inside the basket (Fig.
1b). Trials lasted a total of 1.52 seconds, which consisted of
a move and hold period lasting 760 ms respectively. Once
a goal target was presented, the move period allows the
participant to react and begin to move the cursor out of the
basket and towards the target. The aim during the hold period
is to keep the cursor within the target without leaving the
boundaries. During the move and hold periods, the cursor
was made invisible, illustrated in Fig. 1c. Therefore, the task
was completed without concurrent visual feedback of the
cursor’s position. After the hold period, active control of
the cursor ceased. Then, feedback of the cursor’s previously
unseen motion was played back at the same rate it was
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Fig. 1. The MCI task. Figure edited from [5]. a) The 2-dimensional
myoelectric-controlled interface space. Cursor shown in green. b) A rep-
resentative cursor trajectory. c) Task timing structure denoting cues, move,
hold and playback periods. Dashed traces correspond to the ‘blind’ control
input window. Solid traces refer to the playback of the cursor’s recorded
path during the move and hold periods.

captured. This allowed the participants to spectate their
performance during the move and hold periods. Once the
playback had concluded, a score was presented based on
the proportion of the hold period the cursor was within the
correct target.

Participants completed a series of blocks, each consisting
of 60 trials. Targets were presented in a pseudo-random
order. Participants carried out the experiment at home over
five days. They were allowed to practice at their own
convenience and choose how many blocks to complete in
a given session.

E. Analysis

A post-hoc ‘decoder score’ was used as a metric to
compare hold score to classification accuracy of machine
learning based systems. The predicted target was assigned
as the first target the cursor dwelled within consecutively for
240 ms [17]. A decoder score of 1 was obtained when the
predicted target was indeed the presented target. A score of
0 was obtained otherwise. All reported values represent the
mean and standard error of the mean. Significance values
were calculated using a two-tailed Mann-Whitney-Wilcoxon
test.

III. RESULTS

Participants 1 and 2 calibrated once, and used the same
normalization values throughout all training sessions. Partic-
ipant 3 recalibrated at the beginning of day 2, and continued
to use the second set of normalization values for the remain-
ing four sessions.

Fig. 2 shows data from three participants during the
five day training period. Each column corresponds to an
individual participant. Participants 1-3 completed 22, 31 and
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Fig. 2. Overview of participant performance during the home training task. (a-c) Refer to a row of plots where each column represents data from a
single participant. (a-b) Hold score and decoder score performance during the five day training period. Alternating gray and white vertical highlights denote
blocks completed on the same day. Points, means; error bars, 95% confidence interval. c) Example heat maps showing decoder score performance across
targets over 60 trials. Targets are numbered anticlockwise from 1-4.

29 blocks, respectively. This equates to a combined total of
4920 trials.

Fig. 2a shows hold scores across participants. The hold
score relates to the proportion of time the cursor dwelled
within the correct target during the hold period. Participant
1 did not show a trend of improvement, between day 1 of
training (0.92±0.001) and day 5 (0.89±0.008). Participant
1’s scores could not be tested for significance due to the
number of blocks completed. However, there was a signifi-
cant improvement in hold score for participant 2 between day
1 (0.54±0.06) and day 5 (0.91±0.003), (p< 10−2). Finally,
participant 3 significantly improved hold score between day
1 (0.53±0.03) and day 5 (0.83±0.02), (p < 10−2).

Fig. 2b shows plots representative of the decoder score.
The decoder score for participant 1 did not show a trend
of improvement between day 1 (0.87 ± 0.01) and day 5
of training (0.84± 0.03). Whereas, participant 2 was able
to significantly improve during training between day 1
(0.55±0.03) and day 5 (0.91±0.01), (p < 10−2). Similarly,
participant 3’s decoder score improved significantly from day
1 (0.54±0.02) compared to day 5 (0.84±0.02), (p < 10−2).

Fig. 2c shows a row of heat map plots corresponding
to the block with the maximum average decoder score for
each participant. This occurred on block 11 for participant 1,
which corresponds to day 3, and on block 23 for participants
2 and 3, corresponding to day 4.
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IV. CONCLUSIONS

To the best of the authors’ knowledge, this is the first
example of retention of four grasp classes with the use
of two electrodes based purely on motor learning i.e.
with no explicit algorithmic control. We have shown that
a physiologically abstract motor behavior can be retained
and consistently reproduced in the absence of concurrent
visual feedback. During real prosthesis control there can
be significant end-to-end delays between intent and grasp
completion [18], [19]. The delayed feedback method used
here more closely approximates the user-device feedback
loop during real control. Therefore, our findings suggest no
additional hardware is necessary to provide feedback of the
user’s input to restore four grasps. This supports abstract
decoding’s claim of being easily implemented into existing
dual-site control devices.

Prior motor learning-based myoelectric control studies
were not able to distinguish if the observed changes in
performance should be accredited to short-term adaptation or
true motor learning. We trained participants with a feedback
paradigm which prevented within-trial adaptation. We found
that participants were still able to significantly improve their
score over five training sessions. Also, as training progressed,
participants were able to retain their performance between
days. These results strongly suggests that abstract decoding
with delayed feedback does facilitate motor learning.

While only three participants were tested, a combined
total of 4920 trials were collected over five days of training.
Our results show the variability of learning rates between
individuals. Participant 1 was highly accurate from the onset
of the experiment, achieving >90% accuracy within the
first block. This suggests that their motor behavior learned
in the real-time feedback task generalized to the delayed
feedback condition. Performance from participants 2 and 3
followed a more typical learning curve, eventually becoming
highly accurate during training. These results highlight the
importance of personalized, multi-day training during the
assessment of motor learning-based control schemes.

The decoder score was added post-hoc as a metric to
provide a comparison of hold score to classification accu-
racy of machine learning systems. It should be noted that
changes in muscle response were motivated by maximizing
the presented hold score, not the offline calculated decoder
score. In addition, the asynchronous timed constraints of both
scoring methods would necessitate different motor behavior.
For example, decoder scoring would penalize curved cursor
trajectories that take place during the move period, which
would be tolerated by the hold score. We hypothesize that
enhanced decoder scores would be obtained if participants
were trained congruently. The use of such a decoder is by no
means the finalized method of interpreting outputs in abstract
decoding. This experiment is part of a larger study, which
will include real-time prosthetic control experiments.
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