
  

  

Abstract— The increase in Autism Spectrum Disorder (ASD) 
prevalence estimates over the last decades has driven a quest to 
develop new forms of rehabilitation that can be accessible to a 
larger part of this population. These rehabilitation approaches 
often take the form of computer games that are blind to the 
user’s emotional state, which compromises their efficacy. In this 
study, a set of physiological signals were acquired in 
simultaneous with functional Magnetic Resonance Imaging 
(fMRI) with the future prospect of combining both kinds of data 
to create models capable of assessing the true emotional state of 
their users based on physiological response as a measure of 
autonomic nervous system, having as ground truth the activity 
of targeted brain regions. This paper describes an initial 
approach, focusing on the information contained on the 
physiological signals alone. A total of 35 features were extracted 
from biosignals’ segments and subsequently used for automatic 
classification of arousal state (High Arousal vs. Low Arousal). 
The suboptimal results, although some extracted features 
present statistically significant differences, underline the 
challenging nature of our proposal and the added obstacles of 
recording physiological signals in the magnetic resonance 
environment. Further exploration of the measured signals is 
needed to gather a bigger number of discriminative features that 
can improve classification outcomes. 

I. INTRODUCTION 

Autism Spectrum Disorder (ASD) is a neurodevelopmental 
condition that affects social and communication skills, as well 
as normal patterns of behavior, interests and activities [1]. As 
of 2014, 16.8 per 1000 children aged 8 years were diagnosed 
with ASD in the United States of America (USA), which 
represents an increase of 150% when compared with 2000 
estimates [2]. Hence, the number of people that can benefit 
from new and improved rehabilitation approaches is enormous 
and continues to rise.  

Over the last decades, there has been an increasing interest 
in serious gaming as an alternative or complement approach to 
the traditional therapeutical interventions. A serious game is a 
game with an educational purpose, going beyond the sole 
purpose of entertainment. This rehabilitation tool represents a 
low-cost option that allows for the repeated practice of 
different skills that are usually impaired in the ASD 
population. Autistic individuals, however, generally present an 
increased sensory sensitivity, which may compromise the full 
potential and efficacy of the serious games, the presentation of 
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the wrong type and number of stimuli may lead to the 
disengagement of the user from the game, or even to a 
complete rejection of the intervention [3]. Therefore, the next 
step must be to optimize the serious games based on the 
emotional state of its users. 

In this sense, this project aims to develop biofeedback-based 
models, particularly designed for the ASD population, that, 
based on autonomic nervous system (ANS) physiological 
signals, can infer the state of the user, having as ground truth 
the neuronal activation evoked by different emotion eliciting 
stimuli.  

While physiology based automatic emotion assessment has 
been substantially considered for typically developed (TD) 
individuals [4]–[8], it is underexplored for ASD. To the best 
of our knowledge, there are only three papers describing 
automatic emotion classification in autistic subjects. By 
measuring EDA, PPG, skin temperature, EMG and ECG on 
children with ASD while they performed computerized 
cognitive tasks, Liu et al. (2008) successfully attempted to 
classify emotional states of liking, anxiety and engagement in 
this population, achieving accuracies of 82.9 % with Support 
Vector Machines (SVM) [9]. Kushki et al. (2015) classified 
anxiety-related arousal using metrics derived from the ECG 
and a modified Kalman filter obtaining an average specificity 
of 92% and sensitivity of 99% [10]. More recently, Sarabadani 
et al. (2020) automatically discriminated positive from 
negative valence during high and low arousal in ASD 
obtaining accuracies of 78.1% and 84.5% for high arousal and 
low arousal, respectively, using K-Nearest Neighbors (KNN), 
Linear Discriminant Analysis (LDA) and SVM, and 
combining the outputs of all the classifiers using a Majority 
Vote to enhance the performance [11]. 

While these positive outcomes suggest that emotion 
recognition is a viable approach in ASD, the evidence of 
emotion dysregulation in this population [12] seems to be 
overlooked. This evidence means that the use of self-
assessment questionnaire responses or labels based on the 
general population’s emotional perception of a stimulus as 
ground truth is of limited accuracy. For this reason, we believe 
that, due to its spatial resolution that allows for the precise 
mapping of brain regions or networks of interest, functional 
Magnetic Resonance Imaging (fMRI) is the ideal true state 
indicator. Sessions involving this imaging technique, however, 
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are quite expensive and nonportable, which limits their 
applicability. With this study, we intend to find ANS 
physiological patterns that are representative of the targeted 
brain regions modulation, so that it can be inferred outside the 
MR scanner.  

To this end, respiration, photoplethysmography (PPG), 
electrodermal activity (EDA), electroencephalography (EEG), 
pulse oximetry (SpO2) and pupil size were recorded 
simultaneously with fMRI in ASD patients and a matched TD 
group, while watching short videos, chosen specifically to 
induce different kinds of emotional response. 

This paper describes an initial approach to the experiment, 
which includes feature extraction from the physiological 
signals and subsequent binary classification into high or low 
arousal states. Given the early nature of this study, the data 
acquired from the fMRI are not yet considered. Instead, the 
ratings of arousal from the database where the videos were 
taken from were used as classification labels. 

II. METHODS 

A. Participants 
Fourteen individuals with ASD (1 female), and 13 

typically developed (TD) individuals (2 females) took part in 
this study. Participants (or their legal representatives) signed 
an informed consent to participate in the study. Every subject 
completed the entire task. Table I provides a detailed 
description of the participants. 

 
TABLE I. DEMOGRAPHIC DESCRIPTION OF THE ASD AND TD GROUPS, 
INCLUDING AGE, FULL-SCALE INTELLIGENCE QUOTIENT (FSIQ), EMPATHY 
QUOTIENT (EQ), AUTISM SPECTRUM QUOTIENT (AQ) AND THE AUTISM 
DIAGNOSTIC OBSERVATION SCHEDULE (ADOS-II) TOTAL SCORE. EACH 
SCORE IS PRESENTED IN TERMS OF GROUP AVERAGE AND STANDARD ERROR, 
IN BRACKETS. GROUP DIFFERENCES WERE ASSESSED WITH A TWO-SAMPLE T-
TEST, WITH P-VALUES ON THE LAST COLUMN. GROUPS ARE MATCHED BY AGE 
AND EQ. 

 

B. Experimental Task 
The task follows a block design. Each block consists of a 15 

second video presentation trailed by a self-assessment period 
and is preceded by a rest period of approximately the same 
duration. The protocol is composed by 3 task runs, and each 
run is made up of 10 video trials. 

The 30 videos (10 videos x 3 runs) were taken from the 
Chieti Affective Action Videos (CAAV) database and 
represent different actions, examples include hugging 
someone, stealing from another or simply hanging a jacket. For 
our experiment we chose to use videos recorded in the 1st 
person perspective and to coincide the gender of the participant 
to the main actor [7]. Each video in the database is 
accompanied by the mean rating of valence and arousal given 
by an evaluation group using a 9-point Self-Assessment 
Manikin (SAM). Consequently, each video falls into one of the 

following 3 categories: low valence and high arousal (LVHA); 
high valence and high arousal (HVHA); no valence and low 
arousal (NVLA). Thus, 10 videos of each category were 
selected to integrate the task. 

For the self-assessment, the subjects were asked to rate the 
video they just watched also in the 9-point SAM scale. For this 
purpose, participants used a joystick. 

Before each session, the task was explained and participants 
were asked to rate some training videos, to guarantee that both 
concepts of valence and arousal were understood, and that they 
knew how to operate the joystick. 

C. Data Acquisition 
EEG, EDA and SpO2 were acquired using the MP150 

system and AcqKnowledge 4.2 software (BIOPAC Systems, 
Inc.). Respiration and PPG were recorded using the 
Physiological Measurement Unit of the MRI scanner 
(Siemens Healthcare) and pupil size was registered using the 
EyeLink 1000 Plus Eye Tracker with the long-range mount 
(SR Research Ltd.). Due to the hypersensitivity of the ASD 
population, we tried to simplify and reduce preparation time 
as much as possible, thus, EEG was acquired using only 3 
electrodes, placed on the forehead, and either the right or left 
earlobe and temporal area. EDA was measured using 2 
Ag/AgCl electrodes taped to the proximal phalanges of the 
index and middle fingers of the participant’s nondominant 
hand. SpO2 and PPG were measured using a pulse oximetry 
and pulse finger sensors, respectively. Respiration was 
measured with a respiratory cushion attached to the 
participant using a respiratory belt. EEG, EDA and SpO2 
were recorded with a sampling rate of 5000Hz, PPG and 
Respiration were acquired at 400Hz and pupil size at 500Hz. 

D. Signal Processing 
Photoplethysmography 
To reduce noise contamination, the PPG signal was 

bandpass filtered using a 6th order Butterworth filter with a 
lower cut-off frequency of 0.5Hz and a higher cut-off 
frequency of 20Hz. 

The clean PPG signal was then used to compute the Heart 
Rate (HR) by identification of the PPG pulse peak. HR is 
affected by both, the sympathetic and parasympathetic 
nervous systems, and is one of the most popular measures 
when it comes to emotion assessment. 

Electrodermal Activity 
EDA data were high-pass filtered with a 0.5Hz cut-off 

frequency as it was being collected, and it was later low-pass 
filtered using a 5th order Butterworth filter with a 1Hz cut-off 
frequency. 

Electroencephalography 
As expected, the EEG recordings were considerably 

contaminated by MR gradient switch artifacts. To correct 
them, the FMRI Artifact Slice Template Removal (FASTR) 
algorithm from the FMRIB plug-in for EEGLAB (version 
1.21) was used. Feeding the algorithm with the corrupted 
signal and the events for each slice acquired, it computes an 

 ASD TD P 
N 14 13  

AGE 21.58 (1.36) 23.15 (0.91) 0.34 
FSIQ 94.50 (2.97) 111.23(4.30) <0.01 
EQ 38.45 (4.54) 45.62 (2.89) 0.18 
AQ 24.17 (1.49) 15.38 (1.54) <0.01 

ADOS-II 11.17 (0.72) - - 
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average template for the artifact and subtracts it from the 
signal, locked to each slice trigger.  

Signal Segmentation 
Lastly, signals were divided into 30 second segments, 

time-locked to the beginning of each video, this way each 
segment includes the 15 seconds of the video, the self-
assessment period, and some seconds after.  

 Feature Extraction 
For each video trial, a total of 35 features was extracted 

from the different biosignals. To account for possible 
carryover effects, the value of the feature for the last 5 seconds 
of the previous rest period was subtracted after extraction. 

For each signal, a brief description of the extracted 
features is given in Table II. 

 Statistical Analysis 
In a first approach, with the intention of inspecting the 

extracted features for significant differences among 
conditions and groups, the means of every feature for each 
subject were computed, for the conditions of High Arousal 
(HA) and Low Arousal (LA). Given its’ subjective nature, for 
this preliminary study, the valence dimension was not 
considered. The HA and LA conditions were then obtained by 
condensing the 3 original ones (LVHA, HVHA, NVLA) and 
were defined considering both the database ratings and the 
self-assessed arousal values given by each participant. Using 
the database ratings, a trial was labeled as LA if the arousal 
rating for the corresponding video was lower than 4 and 
labeled as HA otherwise. For the self-assessment, k-means 
clustering was performed on each participant’s answers 
individually to partition them into 2 clusters. Trials were then 
classified as HA or LA based on the cluster they fell into. 
Wilcoxon signed rank tests were then performed to look for 
statistically significant differences in feature values between 
HA and LA, for each group, and Wilcoxon rank sum tests 
were applied to look for differences between groups for the 
two conditions. 

 Classification 
In order to explore the accuracy of automatic emotion 

assessment in the data acquired with our experimental 
protocol, 4 classification algorithms were applied. The ratings 
of the CAAV database for arousal were used to label the data.  

The considered classifiers were a Euclidean Minimum 
Distance Classifier (MDC – Euclidean), a K-Nearest 
Neighbors (KNN) and SVM using a Radial Basis Function 
(SVM RBF) kernel and a linear (SVM Linear) kernel. The 
optimal parameters for the KNN (number of neighbors, K) 
and SVM (cost, C and Kernel Parameter, γ) were determined 
by applying a 50/50 partition on the training set 5 times and 
choosing the parameters that resulted in the smallest 
classification error. After the hyperparameters were selected, 
the classifiers were retrained with all training data for the 
chosen parameters. 

The classifiers were then tested for both intraparticipant 
and interparticipant classification. For the intraparticipant  

approach, data from each subject were randomly split 
using the 70:30 ratio, where 70% of the data were used to train 

the classifier and the remaining data were used for testing. 
This process was repeated 30 times to avoid outlier results. As 
for the interparticipant classification, we employed the Leave 
One Subject Out (LOSO) method where the data from each 
participant are used once for testing, while the rest of the 
participants’ data are used to train the classifier. 

Finally, to ascertain if the accuracies of the classifiers 
were significantly greater than chance level (50%), 
permutation tests were used. For each partition, after testing, 
the true labels of the test set were iteratively shuffled, and 
accuracies were calculated using the random labels as the 
predicted classes. The number of times that these accuracies 
were greater than the one obtained with the classes predicted 
by the classifier, were then counted. 

III. RESULTS 

The significance levels that resulted from the statistical 
analysis are present in Tables I and II, for comparisons 
between conditions and groups, respectively. Only the 
features that suggest statistically significant differences for at 
least one scenario are shown in each table. 

Apart from the MDC – Euclidean which returned poor 
accuracies, not significantly higher than chance level, all other 

Signal Feature Name Extracted Features 

EDA 

meanEDA 
maxEDA 
minEDA 
mean_abs_fd_EDA 
mean_deriv_neg_E
DA 

Mean 
Maximum 
Minimun 
Mean Absolute First Difference 
Mean of Derivative for Negative 
Values 

PPG 

meanPPG 
maxPPG 
minPPG 
NNmean 
 
SDNN 
SDSD 
 
RMSSD 
 
NN50 
 
pNN50 
 

Mean 
Maximum 
Minimum 
Mean of the Normal-to-Normal 
(NN) time intervals 
Standard Deviation of NN intervals 
Standard Deviation of Successive 
Differences between NN intervals 
Root Mean Square of Successive 
Differences between NN intervals 
Number of Successive Differences 
greater than 50ms 
Ratio between NN50 and total 
number of NN intervals 

EEG delta, theta, alpha, 
beta, gamma 

Relative Power (delta, theta, alpha, 
beta and gamma bands) 

Respir
ation 

meanResp 
maxResp 
minResp 
mean_abs_fd_resp 

Mean 
Maximum 
Minimum 
Mean Absolute First Difference 

Pupil 
Size 

meanPupilSize 
maxPupilSize 

Mean  
Maximum 

Heart 
Rate 

meanHR 
maxHR 
minHR 
VLF 
LF 
HF 
RaLH 

Mean 
Maximum 
Minimum 
Relative Power (Very Low 
Frequency, Low Frequency, and 
High Frequency bands) 
Ratio between Low and High 
Frequency Powers 

SpO2 
meanSpO2 
maxSpO2 
minSpO2 

Mean 
Maximum 
Minimum 

TABLE II. LIST AND DESCRIPTION OF THE FEATURES EXTRACTED FROM 
THE PHYSIOLOGICAL SIGNALS. 
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3 classifiers exhibited similar results on classifying HA vs 
LA. While accuracies for the intraparticipant classification for 
both groups are highly variable and for the most part, not 
significantly higher than chance, the interparticipant 
outcomes have a narrower distribution and exhibit accuracies 
higher than random chance more than 80% of the times. The 
median accuracy value for all 3 interparticipant modalities is 
of approximately 60%. To illustrate these findings, 
classification results for SVM Linear on intra and inter subject 
modalities on classifying HA vs LA are displayed in Fig.1.  

 
TABLE III.  P-VALUES OF PAIRWISE COMPARISONS FROM WILCOXON SIGNED 
RANK TEST (HIGH AROUSAL COMPARED TO LOW AROUSAL) 

TABLE IV. P-VALUES OF PAIRWISE COMPARISONS FROM WILCOXON RANK 
SUM TEST (CLINICAL GROUP COMPARED TO CONTROL GROUP) 

Feature 
Database Self-Assessment 

High 
Arousal 

Low 
Arousal 

High 
Arousal 

Low  
Arousal 

minPPG 0,87 0,04 0,72 0,03 
delta 0,05 0,01 0,04 0,03 
beta 0,03 0,01 0,03 0,03 

gamma 0,08 0,04 0,05 0,10 
meanHR 0,01 0,68 0,01 0,17 
maxHR 0,01 0,37 0,01 0,72 
minHR 0,01 0,87 0,01 0,15 

IV. DISCUSSION 
The statistical analysis revealed that only a limited number 

of extracted features present statistically significant 
differences between HA and LA conditions as well as 
between groups. The time-domain features of the HR 
(meanHR, maxHR and minHR) seem to be significantly 
different between conditions for the clinical group, and also 
between groups for the HA condition, which is in accordance 
with the known relation of this signal with emotion 
discrimination [13]. 

These results help to explain the low classification 
accuracies and reveal the low discriminative power of the 
extracted features for distinguishing between HA and LA. 

A possible explanation for the poor results of the 
intraparticipant modality is the low number of observations 
for each individual participant, which limits the 
generalization capacity of the models. 

The simultaneous acquisition of physiological signals and 
fMRI represents a great challenge. Besides the common noise 
sources, there is the added artifact caused by the gradient 
switch of the MRI scanner that severely contaminates most of 
the recordings and results in low signal-to-noise ratios (SNR). 
This interferes with the quality of the features derived from 
the signals and hinders the appearance of subtle differences 
between states, which could be valuable for their distinction. 

This preliminary approach reiterated the challenging 
nature of this project and highlighted the need to further 
explore the biosignals in order to find meaningful features that 
can optimize the classification results. 
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Feature 
Database Self-Assessment 

Clinical 
(N = 14) 

Control 
(N = 13) 

Clinical 
(N = 14) 

Control 
(N = 13) 

meanPPG 0,71 0,31 0,01 0,19 
minPPG 0,19 0,15 0,76 0,02 
maxResp 0,67 0,05 0,67 0,17 

meanPupilSize 0,67 0,03 0,76 1,00 
meanHR 0,01 0,38 0,12 0,84 
maxHR 0,02 0,45 0,24 0,84 
minHR < 0,01 0,59 0,01 0,95 
RaLH 0,04 0,95 0,01 0,68 

Figure 1. Distribution of accuracies achieved by SVM on classifying HA vs 
LA on intra and inter subject modalities. 
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