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Abstract— In the research of motion control using brain-

machine interface (BMI), analysis is usually conducted on one 

ensemble of neurons whose activity serves as direct input to the 

BMI decoder (control units). The number of control units is 

diverse in different control modes. That is to say, the size of 

dimensions of neural signals used in motion control is diverse. 

However, how will the behavioral performance change with this 

kind of diversity? What effects does this diversity have on 

modulation characteristics of control units? To answer these 

questions, we designed three modes of motion tasks using neural 

signals with different dimension sizes to control. Our results 

imply that as the dimension reduces, some deviations appear in 

behavioral performance. At the same time, the control units tend 

to have a directional division of control, then enhance their 

stability and increase modulations after division. 

I. INTRODUCTION 

Since the technical concept of "brain-machine interface 
(BMI)" was put forward, it has become promising frontier 
research in the field of neuroscience [1]-[5]. To date, BMI has 
been increasingly used as a tool to study the underlying 
mechanisms in the motor cortex. An ensemble of units is 
involved here: control units -- a group of units that are involved 
in the movement of external actuators, usually from the 
primary motor cortex (M1). Thereafter, we will refer to the 
dimension of signals from control units as control dimension. 
The more the control units are, the higher the control 
dimension is. However, the effects of the changes of control 
dimension on modulation characteristics of units are still 
opaque. 

Studies demonstrated that these control units have different 
modulation characteristics in different control modes of the 
neural prosthesis [6]-[14]. Ganguly et al. found that the 
modulations of the control units switched with control mode 
by analyzing a small ensemble of units involved in motion [7]. 
Golub et al. projected neural control signals generally larger 
than 90D into low-dimensional subspace by dimensionality 
reduction and observed the characteristic changes in each 
dimension [10]. Xiao et al. introduced perturbed mapping on 
control units to study a long-term change in control units 
modulation after changing control modes [11]. Lansdell et al. 
proposed that dissociation of motor units required by a 
simultaneous BMI control and motion control can occur with 
individual unit specificity [14]. 
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However, in previous studies, there were generally dozens 
of control units involved, which brings a huge computation 
burden to analyze each control unit from the perspective of 
single units. At the same time, the influence of the changes of 
control dimension on the modulation characteristics of control 
units is still unknown. Therefore, we designed an experimental 
paradigm of controlling 2D cursor movement by only two 
units, alongside traditional BMI control in all channels and 
manual control with a joystick. Since the control dimension 
sizes in the three modes are all diverse (manual control > all-
channel brain control > 2-unit brain control), we can compare 
and analyze control units in the three control modes. 

II. METHODS 

A. Experimental Subjects and Platform 

The monkey implanted with one 96-channel intracortical 
microelectrode array (Blackrock Microsystems, US) in the 
primary motor cortex (M1) was raised in the Experimental 
Animal Center of Zhejiang University, China. All 
experimental procedures involving animal models described 
in this study were approved by the Animal Care Committee of 
Zhejiang University. We built an experimental platform that 
provided paradigm training for monkeys and recorded neural 
signals and kinematics information synchronously (Figure 1). 
After training, the monkey can complete three modes (manual 
control and two modes of brain control) of center-out control 
tasks. 

B. Training Process 

During training each day, the monkey was required to 
complete two sessions of center-out tasks: the brain control 
session (BC) and the manual control (MC) session (Fig.1), 
respectively. In the brain control session, the neural signals 
from the monkey were transmitted to a Kalman filter to decode 
the cursor velocity and then updated the cursor position in the 
screen until the cursor hit the visual target within the fixed 
time. When each trial succeeded, the monkey can get some 
water as a reward. We used the methods described by Fraser 
& Schwartz [15] to access the stability of the units, so that the 
effects of the recording instability was excluded. We designed 
two modes of brain control: after the monkey achieved 
proficient cursor control with all channels, it was trained to 
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control the cursor with only 2 units (2-unit brain control). We 
picked up several pairs of control units, and after training, the 
monkey also achieved successful control.  

In the manual control session, the monkey completed the 
same center-out tasks with a joystick, and the neural signals 
were recorded synchronously. 

C. Single Unit Analysis 

In this study, we performed the neural modulation analysis 
on every single unit. The firing rate of a unit during the total 
experiment time can be described by a cosine function of the 
movement direction according to the directional tuning model 
[16]. On account of this, we quantified two indicators to 
describe its modulation characteristics, namely, R square and 
modulation depth (MD) [16]. R square describes the goodness 
of fit, indicating how well the regression equation (i.e., the 
directional tuning model) fits the observed value. The 
modulation depth is the amplitude of the tuning model, which 
describes the gap between the firing rate in the preferred 
direction and the basal firing rate. It represents the modulation 
ability of the unit. Basal firing rate is the offset of the fitted 
cosine model relative to the origin and represents the average 
firing rate of the unit in all directions. The preferred direction 
is the direction corresponding to the maximum firing rate in 
the tuning model. 

D. Granger-causal Inference 

Suppose we perform the Full Regression to predict variate 
X based on its own past and the past of variate Y, and the 
Reduced Regression given by omitting the “historic” (past) Y 
dependency [17]. To quantify the contribution that one unit has 
on movement, we adopted a Granger-causality type metric 
through the log-likelihood ratio:  

 X→Y ≡ ln
|Σ𝑥𝑥

′ |

|Σ𝑥𝑥|
. 

where Σ𝑥𝑥  and Σ𝑥𝑥
′  are the residuals covariance matrices of the 

“full regression” and “reduced regression” respectively. 

Several former studies [17]-[19] have proved that Granger-

causal Inference can be applied in neuroscience and  has 

quantitative meaning. Thus  can quantify how much each unit 
contributes to cursor movement. To make sure that all data 
used in Granger-causal Inference are stationary time series, we 
averaged neural signals and kinematic data across trials before 
analysis. 

In this study, we quantified the contribution of the units to 

the horizontal and vertical motion, denoted as x and y, by 
calculating the Granger-causal Inference between the firing 

rate and the horizontal and vertical velocity. In order to figure 
out whether the unit has some division in horizontal and 
vertical directions, we defined a directional-preference index. 
The directional-preference index of unit i was then: 

 𝒫𝑖 xy∕xy 

This index ensured that an index of 0 corresponds to a unit 
that showed no preference to both directions; An index of 1 
corresponds to a unit that only contributes to horizontal 
motion, and in contrast, an index of -1 corresponds to a unit 
that only contributes to vertical motion. 

III. RESULTS 

After training, the monkey successfully completed the 2D 
center-out cursor control task in three control modes: manual 
control, all-channel brain control and 2-unit brain control 
(average success rate all up to 0.9). Notably, we selected 
several pairs of control units and after training, the monkey can 
complete the task with the selected 2 units. In the Results, we 
selected data from three representative pairs of control units: 
Unit 12&32, Unit 35&51 and Unit 35&93 in 2-unit brain 
control, comparing with two other control modes, 10-15 
sessions for each mode. The difference in data collection time 
used for comparison is no more than 500 trials, and there is no 
significant difference in neural signal stability. 

Therefore, how do the behavioral performance and the 
modulation characteristics of the control unit change in 
different control modes since they have different control 
dimension sizes? We will use the methods mentioned above to 
discuss this problem. 

A.  Reduction of Control Dimension Increases Motion 

Control Difficulty 

Theoretically, if the number of control units decreases, the 
task may become more difficult, and there should be some 
decreases in performance. We analyzed two quantitative 
indicators of behavioral performance, success rate and reach 
time, after reaching proficient control in three control modes. 
In this paper, Fig. 2 shows the comparison results of three 
modes. We calculated the success rate and reach time during 
10-15 experimental blocks, above 400 trials, for each control 
mode. In Fig. 2, bars in green, blue and red represent 

 
Figure 1.  Schematic of the training process. The monkey controls a 

cursor to reach the target in different control modes. 

 

 
Figure 2.  Behavioral performance comparison. (a) Success rate 

comparison of three control modes. (b) Reach time comparison of three 

control modes. Error bars represent the mean ± SEM. *** p < 0.001, * 

p < 0.05, n.s. not significant, Kruskal-Wallis test. 
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behavioral indicators of 2-unit brain control, all-channel brain 
control and manual control, respectively. Hereafter, we 
abbreviated three control modes as “2-unit”, “all-channel” and 
“MC” in figures. 

Fig. 2 indicates that manual control obviously performs 
much better than the brain-control mode in both the success 
rate and the time to reach the target. Moreover, the 
performance of all-channel brain control is also better than that 
of 2-unit brain control, comparing the mean and standard error 

of the mean (SEM): success rate: 0.93±0.01, 0.94±0.03 and 

1.00±0.00, respectively; reach time: 3.20±0.08, 2.36±0.15 

and 0.31±0.02, respectively. These results indicate that when 

the number of control units reduces from tens of thousands to 
dozens, and then reduces to only two, the behavioral 
performance will decrease. It corresponds with the theory that 
if the control dimension decreases, the control difficulty will 
increase. 

B.  Reduction of Control Dimension Motivates Directional 

Division of Units 

To investigate whether control units have a division of 
motion direction, we quantified the contributions of the same 
unit in three modes to the horizontal and vertical directions, 

denoted as x and y, respectively. And then calculated the 
directional-preference index 𝒫  for each control mode to 
compare and analyze. Neural signals and kinematic data were 
from 10-15 blocks, above 400 trials for each mode. 

In Fig. 3, we plotted the distribution histogram of index 𝒫 
comparing three modes. In order to highlight the distribution 
rule of each mode, the median 𝒫median was marked in the figure 
with inverted triangles. If a unit has no obvious directional 
preference, it will result in a 𝒫median near 0. We can see from 
Fig. 3, the 2 control units always have directional division 
when performing the 2-unit brain control, but have less 

obvious division when performing two other control modes. 
For 2-unit brain control, there are always one unit whose index 
𝒫 has distributions peak near -1 (with 𝒫median near -1), and the 
other unit whose index 𝒫 has distributions peak near 1 (with 
𝒫 median near 1). However, compared with the index 
distributions in the other two modes (bar in blue and bar in 
red), there are no such obvious distribution rules. This 
indicates that control units’ division between directions can be 
very strong in the 2-unit control mode but nonexistent in all-
channel brain control or manual control mode. In addition, the 
control units have a slight directional preference in all-channel 
brain control, compared to manual control. Thus, we can 
conclude that as the control dimension decreases, the control 
units have a trend to express division in motion directions, and 
even when the control dimension reduces to 2, the 2 control 
units will have a division in the horizontal and vertical motion 
directions respectively when controlling two-dimensional 
motion. 

C.  Reduction of Control Dimension Enhances the Stability 

of Units after Division 

In this study, we calculated several modulation indicators 
mentioned before to investigate the stability of the control unit. 
One pair of units, Unit 35&93, which participated in all three 
control modes, was taken as an example, and the results were 
shown in Fig. 4. Fig. 4(a) and (b) show that the R square of 
unit 35&93 in brain control mode is generally larger than that 
in manual control mode, and the R square in 2-unit brain 
control mode is also significantly larger than that in all-channel 
brain control mode. In Table 1, two modulation indicators 

(mean± std) of control units are listed, and a similar 

phenomenon as described above can be observed.  

Therefore, we can conclude that in the 2-unit control mode, 
the R square is the largest among the three control modes, 
which indicates that the units have the highest correlation with 
the motion direction, thus maximizing the modulation to the 
task. Further analysis of Fig. 4 and Table 1 shows that the 
variance of R square in different control modes is significantly 

 
Figure 3.  Directional-preference index distribution histogram in three 

control modes. Inverted triangles in green, blue and red represent the 

medians of the distributions of each mode. 

 
Figure 4.  Modulation indicators comparison. (a)-(b) R square. (c)-(d) 

Modulation depth. *** p < 0.001, ** p < 0.01, Kruskal-Wallis test. 
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diverse: as the control dimension decreases, the variance 
drops, which means the stability of the units increases. The 
results of stability analysis show that the two units need to have 
greater and more stable discharge to the task during the process 
of decreasing the control dimension. 

TABLE I.  MODULATION INDICATORS FOR CONTROL UNITS 

Control 

Unit 

Group 

Id Mode R Square MD 

Unit 12&32 

12 

2-unit 0.89±0.06 10.79±3.32 

All-channel 0.76±0.12 8.44±1.89 

MC 0.37±0.16 6.58±2.47 

32 

2-unit 0.93±0.03 15.58±1.22 

All-channel 0.85±0.06 14.39±2.16 

MC 0.21±0.12 4.78±1.86 

Unit 35&51 

35 

2-unit 0.88±0.06 27.91±4.22 

All-channel 0.79±0.08 10.44±2.78 

MC 0.44±0.13 10.12±1.48 

51 

2-unit 0.89±0.05 16.20±2.75 

All-channel 0.82±0.14 14.35±6.44 

MC 0.18±0.20 3.60±1.86 

Unit 35&93 

35 

2-unit 0.92±0.03 23.85±4.53 

All-channel 0.79±0.07 10.44±2.78 

MC 0.41±0.13 9.16±2.51 

93 

2-unit 0.92±0.04 20.28±1.31 

All-channel 0.64±0.11 7.31±2.23 

MC 0.16±0.11 4.06±2.93 

D.  Units Increase Modulation Depth after Division 

After previous analysis, we discovered that in the 2-unit 
brain control mode, the two units have a division in motion 
direction and maintain stable contributions to motion control. 
Fig. 4(c) and (d) show that the modulation depth of Unit 
35&93 is the smallest in manual control, followed by the all-
channel brain control, and the largest in the 2-unit brain control 
mode. A similar phenomenon can also be found in Table 1, 
indicating that as the control dimension decreases, the 
modulation depth of the units increases, thus achieving a more 
stable and powerful control of the cursor and enabling the 
completion of the center-out task. 

IV. CONCLUSION 

The control dimension for the three control modes is 
diverse. For in manual control mode, there are tens of 
thousands of control units involved in motion, the control 
dimension is very high; While in all-channel brain control, the 
control dimension declines to approximately 90; In the 2-unit 
brain control, there are only two control units, thus the control 
dimension declines to 2. In all three modes, since the kinematic 
degrees of freedom are 2, the redundancy of the control 
dimension to kinematic degrees of freedom gradually 
decreases until there is no redundancy. This kind of 
redundancy could be the cause of changes in modulation 
characteristics of control units in different control modes. 

Since in naturalistic motion control, the control dimension 
is highly redundant to the dimension of motion, and a very 
simple behavior may be encoded by tens of thousands of units. 
As a result, a single unit may not need to have a stable firing 
pattern to complete the task. Such individual variability 

cancels out with other individual variabilities at the motion 
output level, so it does not have a significant impact on overall 
performance. When this redundancy reduces, the impact of 
this individual variability on overall outcomes is amplified, 
leading to deviations in behavior. At the same time, individual 
units need to stabilize their firing patterns. Until this 
redundancy is nonexistent, control units need to have a 
division in orthogonal directions of motion, enhance stability 
and increase discharge, trying to eliminate effects on the 
expression of overall behavior. 
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