
  

  

Abstract—Anticipated and unanticipated directional changes 

are commonplace in daily lives. The need for dynamic balance is 

amplified when these transitions are performed in an unplanned 

(i.e., unanticipated) manner. In this study, we used predictive 

simulations and optimal control constructs to test a method for 

reshaping dynamic balance of unanticipated crossover cuts. We 

also compare how such improvements can be mediated at the 

musculotendon level. Our study shows that the performance of 

unanticipated crossover cuts can be optimized to improve 

dynamic balance, and highlight the potential for predictive 

simulations and optimal control to provide quantitative targets 

for reshaping dynamic balance in unanticipated crossover 

cuts—targets which are biologically-feasible. 

 
Clinical Relevance—This approach could inform task-specific 

rehabilitation therapy by suggesting how to reshape an 

individual’s dynamic balance and which joint-level kinematic 

adjustments and muscle groups would be optimal to engage in 

doing so. 

I. INTRODUCTION 

Anticipated and unanticipated changes of direction (i.e., 
locomotor transitions) are commonplace during our daily 
lives. The need for dynamic balance is amplified when the 
transition is performed with little to no prior knowledge of the 
future event [1], [2]. Among different maneuvers are crossover 
cuts which involve moving the trailing swing leg toward and 
in front of the leading stance leg. This style of transition 
increases the need for dynamic balance, relative to side-step 
cuts [1]. Individuals with mobility impairments or those that 
rely on the use of external assistive device such as lower-limb 
prostheses are especially challenged during these types of 
tasks. Thus, improving how specific individuals can perform 
these potentially devastating tasks could lead to fewer 
falls/injuries, inspire greater confidence in the use of assistive 
devices for ambulation, and inform targeted rehabilitation. 

One technique to help guide this process is 
musculoskeletal modeling and predictive simulation [3]–[6]. 
Independent from existing experiment data, predictive 
musculoskeletal simulations based on biomechanically-
meaningful objectives, can provide insights into novel human 
movements. For instance, Lin et al. predicted joint kinematics, 
muscle activations and knee contact loads by minimizing the 
metabolic energy cost during slow and fast walking [6]. Falisse 
et al. predicted realistic walking gaits of the healthy and the 
impaired by optimizing a multi-objective performance 
criterion that combines energy consumption and muscular 
efforts [4]. However, the efficacy of such simulations without 
a dynamic-balance performance objective may be undermined 
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during devastating locomotor transitions, such as 
unanticipated crossover cuts. Nguyen et al. investigated 
human walking with a powered ankle exoskeleton by 
optimizing muscle activations and walking “stability” in the 
sense of base of support [5]. However, such stability criteria 
that neglects angular momentum may not accurately represent 
a person’s dynamic balance during walking [7].  

Whole-body angular momentum (H) is recently used for 
assessing dynamic balance as it is strictly regulated by human 
body during normal walking [8]. The regulation of H is 
important for maintaining dynamic balance because its time 
derivative equals to the net external moment about the body’s 
center of mass. Previous studies have showed the close 
relationship between H and balance. For example, the 
magnitude of frontal-plane H during post-stroke walking has 
been correlated with worse clinical balance test scores [9]. The 
range of frontal-plane H of healthy individuals is greater 
during stair ascent walking that is thought more balance-
challenged compared to level walking [10]. Furthermore, the 
regulation of H is achieved through muscle force generation 
[11], and it is useful to investigate how dynamic balance 
regulation can be improved through changes in coordination 
(i.e., changes in mechanical force of individual musculotendon 
units).  

Dynamic optimization or optimal control, one approach to 
address the redundancy problem of human locomotion [3], 
[11], [12], can be  used to solve predictive musculoskeletal 
simulations. Integrating forward dynamic simulation and 
optimization theory, dynamic optimization approach 
optimizes the muscle excitations to achieve specific 
biomechanical objectives of human walking. Computed 
muscle control also makes estimates of muscle forces by 
integrating static optimization and a linear feedback controller 
into muscle-driven forward simulations [13]. However, 
computed muscle control relies on inputs of experimental data 
and artificial residual forces, and cannot produce predictive 
movements required for balance improvement. Therefore, in 
this study, we used predictive simulations and optimal control 
constructs to test a method for reshaping dynamic balance of 
unanticipated crossover cuts. We also compare how such 
improvements can be mediated at the musculotendon level. 
We hypothesized that increased concentric and eccentric 
mechanical power of musculotendon actuators would be 
required for reshaping dynamic balance. Studies have 
previously identified anticipatory adjustments of dynamic 
balance that exist before transitions during anticipated cuts. 
Therefore, we expect the absence of these adjustments during 
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unanticipated cuts must be compensated for through increased 
muscle force generation. 

II. METHODS 

A. Experiment Data 

Subject-specific as well as normative tracking data for this 
simulation approach was provided by a prior experiment [1], 
[14] of able-bodied subjects that performed unanticipated 
straight walking and 45° cutting tasks in response to random 
auditory cues, which was approved by the Institutional Review 
Board. The cue was given at the initiation of single-leg support 
of the leading leg (stance leg in a cut) before turning. Forty-
two reflective markers were placed on human body and 
tracked by a 10-camera motion capture system (Motion Lab 
Systems, Baton Rouge, LA, USA) operating at 120 Hz. GRF 
data were captured at 1200 Hz using 6 force plates. Data were 
extracted and processed from the auditory cue to the next heel-
strike of the leading leg, corresponding to roughly 1 stride that 
spanned each locomotor transition. 

B. Musculoskeletal Model and Simulation 

A musculoskeletal model (Fig. 1) of each participant was 
created in OpenSim 4.0 [15] by scaling the body segments in 
a generic model with 23 degrees of freedom and 92 Hill-type 
muscle-tendon actuators. The metatarsophalangeal joint was 
locked in each model. An inverse kinematics (IK) algorithm 
and a CMC algorithm [13] were performed in OpenSim to 
determine the initial guess for the dynamic optimization of 
simulations. Foot-ground interaction was modeled as Hunt-
Crossley contact spheres under each foot.  

For each subject, an optimal tracking simulation was 
performed at first using the results of CMC analysis as initial 
guess, and then the dynamic balance-reshape simulation was 
performed with the results of the optimal tracking simulation 
as initial guess. Both of the simulations were formulated as an 
optimal control problem [3], [12], as in  

                                      min
𝒙,𝒖

𝐽                                      (1-a) 

                        Subject to: �̇� = 𝑓(𝒙, 𝒖, 𝑡)                    (1-b) 

                             𝒙𝑙𝑏 ≤ 𝒙(𝑡) ≤ 𝒙𝑢𝑏                           (1-c) 

                             𝒖𝑙𝑏 ≤ 𝒖(𝑡) ≤ 𝒖𝑢𝑏                          (1-d) 

where 𝒙  is the state vector that includes generalized 
coordinates (joint angles), generalized velocities (joint 
velocities), muscle fiber length, and muscle activations; 𝒖 is 
the control vector that represents muscle excitations;  
𝒙𝑙𝑏  and 𝒙𝑢𝑏 are the lower and upper bound of the state vector; 
𝒖𝑙𝑏  and 𝒖𝑢𝑏  are the lower and upper bound of the control 
vector; the state space equation represents the dynamics of the 
musculoskeletal model. The optimal control problem (1) were 
solved using direct collocation [3], [16] that transforms the 
optimal control problem to a large-scale nonlinear 
optimization problem. Customized MATLAB (Mathworks, 
Natick, MA, USA) code was written to solve the nonlinear 
optimization problem. This procedure resulted in a total of 10 
simulations, which were analyzed, including two simulations 
for each participant (i.e., an optimal tracking simulation and a 
dynamic balance reshape simulation). 

The objective function 𝐽  for the optimal tracking 
simulations was as in [17]: 

𝐽 = 𝑤 ∫ (𝑤1‖𝑎‖2
2 +𝑤2‖∆𝐺𝑅𝐹‖2

2 + 𝑤3‖∆𝑞𝑝𝑒𝑙𝑣‖2
2
)𝑑𝑡

𝑡𝑓
0

       (2) 

where 𝑎 is the muscle activation; ∆𝐺𝑅𝐹 is the tracking error 
of GRF; ∆𝑞𝑝𝑒𝑙𝑣  is the tracking error of pelvic coordinates; 𝑤𝑖  
is weight coefficient and determined by experience. The 
objective function for balance-reshape simulations was as in 

𝐽 = 𝑤 ∫
(𝑤1‖𝑎‖2

2 + 𝑤2‖∆𝐻‖2
2

+𝑤3‖∆𝑞𝑝𝑒𝑙𝑣−𝑥𝑧‖2
2
+ 𝑤4‖𝐹𝑝𝑒𝑛𝑎𝑙𝑡𝑦‖2

2
)𝑑𝑡

𝑡𝑓
0

               (3) 

 

Figure 2.  Average normalized whole-body angular momentum of 
experiment target (black), dynamic balance-reshape simulations 

(green) and optimal tracking simulations (red). Shaded area represents 

one standard deviation of experiment target angular momentum. 
Positive frontal, transverse and sagittal-plane angular momentum 

represents rotation away from the leading leg, toward the leading leg, 

and toward the posterior direction, respectively. 

 

 

Figure 1.  Visualized results of a dynamic balance-reshape (green) 

simulation and an optimal tracking (white) simulation of one subject at 

the start, middle and end of the locomotor transition, respectively. In this 

setting, leading (stance) leg is the right leg, and trailing leg is the left leg. 
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where ∆𝐻  is the reshaping error of whole-body angular 
momentum; ∆𝑞𝑝𝑒𝑙𝑣−𝑥𝑧  is the tracking error of pelvic 

horizontal translations that is used to guide the turning 
direction; 𝐹𝑝𝑒𝑛𝑎𝑙𝑡𝑦  is the contact force between two feet that is 

penalized to avoid segment penetration during movements. 
The target angular momentum is the group-averaged (except 
the simulated subject) experiment data of anticipated 
crossover cuts. The initial coordinates at t=0 were constrained 
tightly to simulate the initial unexpected state.  

C. Statistical Comparisons  

For these ten simulations, average positive and negative 
mechanical power of each musculotendon group was 
computed and then compared between tracking and reshaping 
simulations using one-tailed paired t-test (α=0.05). 

III. RESULTS 

The optimal tracking simulation solutions closely matched 
the experiment data. The average root mean square error 
(RMSE) for GRF was less than 0.08 body weight, and the 
average RMSE for pelvic rotation and translation was less than 
1.9˚ and 0.7 cm, respectively. 

The dynamic balance-reshape simulations were able to 
adjust H of the unanticipated state toward that of the 
anticipated state (Fig. 2). In the frontal and sagittal planes, the 
reshaped H was inside one standard deviation range of the 
target experiment H except at around 35% and 45% of 
transition. In the transverse plane, the reshaped H was inside 
one standard deviation range of the target experiment H during 
the second half of transition. Although the reshaped 
transverse-plane H was outside one standard deviation range 
of the target experiment during the first half of transition, it 
more closely matched the experiment target H compared to the 
optimal tracking simulations.  

The average positive mechanical power of trunk 
contralateral (toward trailing-leg) bending muscles, trunk 
interior rotation muscles, leading-leg hip abductors, trailing-
leg hip adductors and hip extensors was significantly larger in 
dynamic balance-reshape simulations compared to the 
tracking simulations (Fig. 3). The magnitude of average 
negative mechanical power of trunk flexors, trunk ipsilateral 
(toward leading-leg) bending muscles, trunk interior rotation 
muscles and trailing leg hip flexors was significantly larger in 

 

Figure 4. Average joint kinematics of trunk, pelvis, leading leg and trailing leg of dynamic balance-reshape simulations (green) and optimal-tracking 
simulations (red).  

 

Figure 3. Average positive and negative musclulotendon actuator net 

power of each muscle group. “*” indicates significant different power in 

dynamic balance-reshape simulations compared to optimal-tracking 
simulations. “Ext”, “Flex”, “Ilb”, “Clb”, “Introt”, “Extrot”, “Abd”, 

“Add” and “Df” refer to extension, flexion, ipsilateral (toward leading-

leg) bending, contralateral (toward trailing-leg) bending, interior 
rotation, exterior rotation, abduction, adduction and dorsiflexion, 

respectively. Positive (negative) mechanical power represents 
production (absorption) of power by the muscle actuator. 
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dynamic balance-reshape simulations relative to the tracking 
simulations. 

In dynamic balance-reshape simulations, the average trunk 
extension angle decreased 2.6˚ at 35% and increased 1.6˚ at 
75% of transition compared to the optimal tracking 
simulations (Fig. 4). The trunk bending decreased 2˚ at 50% of 
transition during reshape simulations. The trunk rotation angle 
increased 6.5˚ at about 50% of transition in reshape 
simulations relative to tracking simulations. In reshape 
simulations, the leading-leg hip adduction angle increased 3.2˚ 
and 2.2˚ at about 20% and 90% of transition, while the leading-
leg hip rotation angle decreased 2.8˚ and 2.1˚ at 10% and 30% 
of transition. The trailing-leg hip adduction angle increased 
3.8˚ at 20% of transition in reshape simulations. 

IV. DISCUSSION 

In this study, we performed dynamic balance reshaping 
simulations and optimal tracking simulations of unanticipated 
crossover cuts to inform the movement of healthy subjects. 
Our results showed that whole-body dynamic balance during 
unanticipated crossover cuts can be reshaped as in anticipated 
states at least in the frontal and sagittal planes, as well as in the 
transverse plane during the second half of transition. Frontal 
and sagittal-plane dynamic balance in this reshape simulations 
was within one standard deviation of experiment target during 
most of the transition (Fig. 2). The decreased sagittal-plane 
dynamic balance from tracking to reshape simulations at about 
40% of transition may be closely related to the decreased 
(more toward anterior direction) trunk extension (Fig. 3). This 
may suggest a way to mediate anteroposterior dynamic 
balance in unanticipated cuts through therapy training or using 
an assistive device [18] to target trunk extension. However, the 
increased (toward the trailing leg) trunk rotation was different 
from the increased transverse-plane dynamic balance in early 
reshape simulations. Instead, the increased (toward leading 
leg) trailing leg adduction may contribute to such enhanced 
transverse dynamic balance. The imperfect reshaping of 
transverse dynamic balance may be due to the incapability to 
further mediate trailing leg movement in the unanticipated 
condition. Furthermore, the adjustments of leading-leg 
adduction movement were in the same direction of frontal-
plane dynamic balance, which may suggest it as a major 
contributor to regulating mediolateral dynamic balance during 
these movement. 

 Our hypothesis that increased mechanical power of 
muscle actuators would be required for reshaping dynamic 
balance was supported for selected muscle groups. The 
increased muscle power could also be related to the adjustment 
of joint kinematics during dynamic balance reshaping. For 
example, the increased positive net power of trunk 
contralateral bending muscles and negative power of trunk 
ipsilateral bending muscles in reshape simulations may 
contribute to the decreased trunk bending, suggesting that 
increased muscle power production may be required for 
frontal-plane dynamic balance reshaping. While the hip 
adduction angle increased in reshape simulations, the 
increased positive power of leading-leg hip abductors may act 
as a counterbalance to the influence of gravity to maintain 
dynamic balance [11]. In the trailing leg, the increased positive 
net power of hip adductors may contribute to the increased hip 
adduction angle during the early phase of these transitions.  

These results demonstrate the potential to use a predictive 
simulation approach to inform task-specific as well as patient-
specific rehabilitation therapies by suggesting how to reshape 
an individual’s dynamic balance and identify which joint-level 
kinematic adjustments and muscle groups would be optimal to 
engage in doing so. Future work is required to investigate the 
feasibility of reshaping dynamic balance of patients, and to 
show that this numerical approach can be applied ubiquitously 
to multiple forms of ambulation. 
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