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Abstract— Radiomics was proposed to identify tumor phe-
notypes non-invasively from quantitative imaging features.
Calculating a large amount of information on images, allows
the development of reliable classification models. In multi-
modal imaging protocols, the question arises of adding an
imaging modality to improve model performance. In addition,
in the implementation of clinical protocols, some modalities
are not acquired or are of insufficient quality and cannot be
reliably taken into account. Furthermore, multi-scanner studies
generate some variability in the acquisition and data. Some
methodological solutions using ComBat and a multi-model
approach were tested to take these two issues into account.
It was applied to a cohort of 88 patients with Diffuse Intrinsic
Pontine Glioma (DIPG). Sixteen models using radiomic features
computed using 0, 1, 2, 3 or 4 MRI modalities were proposed.
Based on Leave-One-Out Cross-Validation, F1 weighted scores
ranged from 0.66 to 0.85. A model of majority voting using the
prediction of all the models available for one given patient was
finally applied, reducing drastically the number of unclassified
patients.

Clinical relevance— In case of patients with DIPG, the
prediction of H3 mutation is of prime importance in case of
inconclusive biopsy or in the absence of it. It could suggest
orientations for new chemotherapy drugs associated with the
radiation therapy.

I. INTRODUCTION

Diffuse intrinsic pontine glioma (DIPG) is a highly aggres-
sive pediatric tumor, with a median survival of 9–11 months
[1]. Due to its position in the brainstem, surgical interven-
tion is not an option, and conventional chemotherapy has
proven to be ineffective. Currently, radiation therapy is the
only standard care that temporarily mitigates the symptoms,
delays disease progression, and extends median survival by a
few months. Recent studies have shown that approximately
80% of DIPG harbor mutations at genes encoding histone
H3K27M. Most current mutations are H3.1 (HIST1H3B) and
H3.3 (H3F3A). These mutations are currently identified from
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biopsy samples and are associated with patient response to
therapy [2]. Some clinical trials to assess therapy options ac-
cording to these mutations are currently under investigation.
In a previous work, we have proposed to predict the two
types of histone H3K27M mutations non-invasively using
MRI-based radiomic features [3]. The ultimate achievement
would be to define whether this could avoid biopsy, or at
least replace it when it is not feasible or not conclusive,
and guide patient care from diagnosis time. The present
work aims at optimizing this predictive model [3] in a larger
cohort. However, the introduction of new patients (coming
from the same center) introduces some variability in the
image database due to the use of two different scanners
(1.5T and 3T scanners). Furthermore, our first model was
based on the joint use of clinical data and four types
of structural MR images: T1-weighted (T1w), T2-weighted
(T2w), T1-weighted post-contrast injection (T1c) and T2-
weighted FLAIR (FLAIR) images. To increase the number of
patients, and the predictive power of the prediction models,
we consider patients having less than four modalities (at least
one among the four).
Radiomics consists in the extraction of quantitative imaging
features to identify tumor phenotypes with some predictive
values. It faces the critical issue of lack of reproducibility
that hampers the successful translation of radiomic model
discovery into better diagnosis, patient classification or mon-
itoring. With the introduction of an additional cohort with
differences in scanner field and settings, radiomic features
were expected to differ between the two scanners, hence
ComBat harmonization was introduced [4]. In addition to
image intensity standardization [5], ComBat is dedicated
to the harmonization of the radiomic features which are
associated with one specific tissue, the tumor in the present
case. Furthermore, to take advantage of all the MR modalities
available for each patient, a multi-model approach is built,
using the 16 combinations of the four MR modalities.

II. PATIENTS AND METHODS

A. Clinical and image data

This monocentric retrospective study (2014-2019) in-
cluded 88 patients with DIPG, scanned at the diagnosis time
with one of the two scanners of our center and at least one
of the four structural MRI modalities: T1w, T2w, T1c and
FLAIR (see Table I).
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TABLE I
MRI DATASET PROPERTIES

1.5T 3.0T
Patients 71 17

T1w 55 10
T1c 52 12
T2w 51 15

FLAIR 50 12

A total of 88 patients were scanned using either a 1.5T
(Signa HDxt, GE Medical Systems) or a 3T scanner (MR-
750, GE Medical Systems). Among them, 17 presented H3.1
mutation type, 47 H3.3 mutation type and 24 were wild type
(WT), or presented another mutation type, or their mutation
status was unknown. A total of 17 patients was scanned
using the 3T scanner; among them, 9 were H3.3 mutated, 2
were H3.1 mutated, and 6 mutations were unknown or wild
type. The clinical feature set consisted of age at the time
of diagnosis and sex of patients (see Table II). Patients with
H3.3 mutations were older at diagnosis than patients with
H3.1 mutation (Wilcoxon test, p<0.01). Table III indicated
the number of patients with H3.1 or H3.3 mutation available
by considering each combination of 1 to 4 MR modality.
Only 47/64 patients (73%) presented the four MR modalities.

TABLE II
CLINICAL CHARACTERISTICS OF PATIENTS INCLUDED IN THE STUDY

H3.1 H3.3 WT/Unknown
Patients 17 47 24

Age (years) 4.9 ± 1.7 8.7 ± 3.6 8.8 ± 6.1
Girls/boys 10g/7b 22g/25b 9g/15b

B. Image feature extraction

Images were pre-processed by a dedicated pipeline [5]
including intensity standardization according to the hy-
brid white stripe approach, resampling to isotropic voxels
(1 mm3) and multi-modal image registration to each T2w
scan (when available, T1 or FLAIR otherwise). For each
patient, a large spherical region was drawn inside the tumor
on the T2w scans (if available, T1 or FLAIR otherwise) and
reported in T1w, T1c and FLAIR scans. Radiomic features
were extracted using PyRadiomics [6]. A total of 79 features
including first-order and texture features were computed for
each MRI modality.

C. Harmonization of features using ComBat

In brain MR, standardization approaches have been pro-
posed to correct for the intensity variability. For instance, the
hybrid white stripe method proved to be successful in the
context of neurodegenerative diseases and brain cancer [5].
However, we showed that this procedure was not sufficient
to explain differences in radiomic features observed for the
same patients undergoing 1.5T and 3T scans [4]. The further
use of ComBat to harmonize radiomic features has been
validated. For each radiomic feature y, computed for one

given modality, measured in patient j with scanner i, the
scanner effect on feature yij can be modelled as (1):

yij ∼ α+ γi + σiεij , (1)

where α is the overall value of the radiomic feature y, γi
is an additive scanner effect and σi a multiplicative scanner
effect associated to an error term εij . ComBat estimates the
α̂, γ̂i, and σ̂i terms, and corrected values y∗ij are computed
by (2):

y∗ij =
yij − α̂− γ̂i

σ̂i
+ α̂ (2)

Finally, values y∗∗2j obtained for the second scanner (3T) are
realigned to the values obtained for the first scanner (1.5T)
according to (3), with µ̂ = σ̂1/σ̂2:

y∗∗2j = µ̂y2j + α̂(1− µ̂) + (γ̂1 − µ̂γ̂2) (3)

D. Machine Learning Models

Five feature sets were considered as the inputs of the
predictive models: one feature set per MRI modality and
one clinical feature set. To benefit from all the available
patient modalities, 16 models (Mk, 1≤k≤16 ) were built.
Table III represents for each model the type of modality it
accepts. This allows the original data set to stay unchanged
while addressing the missing data handling problem. For
each model, a three steps selection procedure was applied
to the imaging features:

• Features were selected according to their robustness to
the spherical delineations. Based on features computed
in dilated and eroded versions of the tumor region,
the absolute agreement intraclass correlation coefficient
(ICC) of each feature was computed. Only features with
ICC > 0.9 were kept.

• Only features presenting an individual Area Under the
Receiver Operating Characteristic Curve (AUC) greater
than 0.75 for the classification task were kept. This
threshold was defined to exclude features that could
degrade the model.

• To reduce the total number of features, hierarchical
clustering was performed, keeping the minimum abso-
lute Spearman’s rank-order correlation between cluster
members greater than 0.85. The feature with the greatest
AUC of each cluster was finally selected.

Classification task was then achieved using a logistic regres-
sion model. Leave-One-Out Cross-Validation (LOOCV) was
applied systematically to estimate the performance of each
of the 16 models. Feature selection and standardization was
performed inside each LOOCV fold, as described in [3].
All experiments have been achieved using radiomic features
before the use of ComBat and after the use of ComBat.
Finally, an additional prediction model (MMV) was defined
as the majority voting of all the models in which each patient
can participate.

3810



TABLE III
TABLE SHOWING THE INFORMATION (MARKED BY ’X’) USED FOR THE DESIGN OF EACH OF THE 16 MODELS, AND THE NUMBER OF PATIENTS THAT

ARE AVAILABLE TO ESTIMATE EACH MODEL

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16
Clinical features x x x x x x x x x x x x x x x x

T1w features x x x x x x x x
T2w features x x x x x x x x

FLAIR features x x x x x x x x
T1c features x x x x x x x x

Nb of Patients 64 54 54 51 53 52 51 49 51 52 48 50 49 47 48 47
H3.1 17 13 13 12 14 12 13 12 12 14 12 12 13 12 12 12
H3.3 47 41 41 39 39 40 38 37 39 38 36 38 36 35 36 35

Fig. 1. Box plots of one radiomic feature (FLAIR 90 Percentile) for values
coming from the 1.5 T scanner (left), the 3T scanner to be aligned (middle)
and the 3T scanner after the realignment procedure using ComBat (right).

III. RESULTS

A. ComBat harmonization

Fig. 1 illustrates the values of one specific radiomic
feature (90 Percentile computed in the tumor region of
FLAIR image) for the patients acquired with 1.5 T and 3T
scanners. After the realignment based on ComBat procedure,
we observe a reduction of the values issued from the 3T
scanner, which better fit with the values coming from the
1.5T scanner. The ComBat procedure was applied to each
radiomic feature independently. Table IV provides the se-
lected features by each of the 16 models without and after
the realignment procedure. Following the feature selection,
twelve parameters (out of the 318 tested) are involved in the
building of the 32 models. Age is selected by all the models.
After the realignment procedure based on ComBat, the 15
radiomic models (M02 to M16) are reduced to two features:
age and one radiomic feature, this number of features being
equal to 2 (7 models), 3 (2 models) and 4 (5 models) when
ignoring the realignment procedure. Table V provides the
F1 weighted score, obtained by the 16 models following
LOOCV without and with realignment. The model showing
the lowest performance (M01) is highlighted in red color
and the model generating the highest performance (M02) is
highlighted in blue color.

B. Prediction of mutation using the multi-model approach

Fig. 2 provides the prediction results obtained by the
model showing the highest performance according to
LOOCV (M02) and the majority voting process (MMV).
Both models used radiomic features after their realignment
using ComBat. Of note, for the model MMV, results are
quite similar before and after ComBat, one H3.3 case that
was misclassified before Combat was classified as undecided
after ComBat, with an equal number of votes for each class.
The number of undetermined cases is drastically reduced
when using MMV : two patients are left undecided, with
a equal number of votes for both tumor mutation whereas
10 patients could not be classified using M02 approach, due
to missing data (lack of T1 modality in that case).

Fig. 2. Prediction results provided by the best radiomic model (M02) and
by the majority voting approach (MMV).

IV. DISCUSSION

The presented approach makes it possible to adapt pre-
diction of the H3 mutation to the real conditions of an
examination and to propose models that adapt to the available
data. Indeed, the prediction of the H3 mutation is of prime
interest in cases where it is not possible to perform the biopsy
or when its results are not conclusive. The different proposed
models will be tested on additional data coming from a
new clinical trial. As the number of subjects will increase,
it will then be possible to refine the models by possibly
incorporating more clues. The model M16 that we initiated
in [3] incorporates patients with all the 4 MR modalities,
in our augmented database, about 25% of the patients could
not be analyzed using this model. Model M01 is based on
age only and clearly shows worse performance than other
models using LOOCV (see Table V). The development of the
multi-model approach fills to main objectives, it avoids any
imputation based methods for missing data handling along
with the benefit of pooling in additional data if a modality
is made available for the study.
The MR scanner affects the radiomic feature values extracted
from MR images, introducing major confounding factors in
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TABLE IV
FEATURES SELECTED BY EACH MODEL BEFORE (IN BLACK COLOR) AND AFTER (IN BLUE COLOR) REALIGNMENT PROCEDURE USING COMBAT FOR

THE CLASSIFICATION TASK (H3.1 VERSUS H3.3 MUTATION).

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16
Clinical Age Age Age Age Age Age Age Age Age Age Age Age Age Age Age Age

T1w Id11 Id6 Id1 Id6 Id1 Id1 Id1 Id1
T2w Id2

FLAIR Id3, Id4 Id3, Id4 Id3 Id3, Id4 Id3 Id3 Id3 Id3 Id3
T1c Id5 Id5 Id5 Id5 Id5 Id5 Id5

Clinical Age Age Age Age Age Age Age Age Age Age Age Age Age Age Age Age
T1w Id6 Id9 Id9 Id9 Id6 Id9 Id6 Id9
T2w Id2 Id2

FLAIR Id7
T1c Id8 Id10 Id11 Id11

1Id1: T1w firstorder median Id2: T2w glcm entropy Id3: FLAIR glcm homogeneity1 Id4: FLAIR firstorder 90Percentile Id5: T1c firstorder 10Percentile
Id6: T1w firstorder root meansquared Id7: FLAIR glszm small area emphasis Id8: T1c glcm Idn Id9: T1w firstorder mean Id10: T1c glrlm short run

emphasis Id11: T1c glcm Entropy

TABLE V
F1 WEIGHTED SCORE OBTAINED BY LOOCV FOR THE 16 MODELS

WITHOUT AND WITH REALIGNEMENT BASED ON COMBAT

Model without ComBat with ComBat
M01 0.66 0.66
M02 0.88 0.85
M03 0.70 0.69
M04 0.75 0.68
M05 0.71 0.74
M06 0.87 0.78
M07 0.82 0.77
M08 0.84 0.82
M09 0.76 0.74

M010 0.70 0.75
M011 0.77 0.77
M012 0.82 0.75
M013 0.83 0.82
M014 0.81 0.78
M015 0.77 0.77
M016 0.81 0.78

multi-centric studies [4]. Here, we validated a harmonization
procedure ComBat realignment for MR radiomic features
extracted from different scanners. In patients scanned with
1.5T and 3T scanners, we showed that this harmonization
procedure realigns radiomic feature distributions (Fig. 1).
In radiomics especially in the light of oncological studies,
pooling images acquired using different devices and different
acquisition and reconstruction protocols is often needed to
increase the size of cohort, or combining different cohorts.
In that context, we demonstrated that ComBat could realign
feature values so that all data could be analyzed together,
even if images had been acquired with different scanners.
It is important to highlight that the effects of ComBat on
our prediction task are small in with respect to the final
decisions. However, changes are seen in feature selection
by individual models to decide upon the type of mutation
as shown in the Table IV. Fewer features are selected after
the feature were subjected to ComBat harmonization. This
further reinforces the positive impact of ComBat as it seems
to increase the level of robustness. This effect needs to be
further investigated, increasing the number of patients with
3T scans.

V. CONCLUSION

The findings of this work demonstrated ComBat har-
monization method could efficiently remove the scan-
ner/protocol effect while preserving the individual varia-
tions in MR modalities coming from different patients and
scanners. Furthermore, it allows the data set to stay un-
changed without the need for adding artificially constructed
data addressing missing data problem which is commonly
used in medical imaging. This approach enables large MR
multicentric studies to highlight the added value of radiomic
analysis in features acquired from different scans. Further-
more, ComBat harmonization may display visible change in
values and rather adds a level of robustness. The multi-model
concept utilizes all the available data performs well due to
the individual model prediction mechanism. Voting by each
model could be associated to a level of confidence for each
prediction.
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