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Sleep Apnea Syndrome Detection Based on Degree of Convexity of
Logarithmic Spectrum Calculated from Overnight Bio-vibration Data
of Mattress Sensor
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Abstract— This paper proposes the novel Sleep Apnea Syn-
drome (SAS) detection method based on the frequency analysis
of the overnight bio-vibration data acquired from mattress
sensor. Concretely, this paper designs the index called Degree
of Convexity of the Logarithmic Spectrum (DCLS), which
quantifies the degree of convexity by computing the difference
between the waveform of the averaged logarithmic spectrum
and the waveform of its approximation formula, and employs
it to detect SAS. Through the human subject experiment on the
SAS detection, the following implications have been revealed:
(1) the SAS subjects tend to have the large density around 3Hz,
and the average of DCLS in SAS subjects and healthy subjects
are 98.6+10.1 and 48.2+6.8 respectively, which succeeds to
correctly separate the nine SAS subjects and the nine healthy
subjects; and (2) the characteristics of the WAKE stage are
different between the SAS and healthy subjects.

I. INTRODUCTION

The accumulation of sleep debt affects concentration in
our daily life and increases the risk of industrial and traffic
accidents [1], [2]. It also increases the risk of developing
lifestyle-related diseases such as depression and demen-
tia [3], [4]. For these reasons, it is necessary to have a
sufficient sleep for reducing the above risk of accidents
and diseases. However, it is hard for sleep apnea syndrome
(SAS) patients to have their sufficient sleep due to sleep
disorders. SAS causes hypopnea (weakening of breathing)
and apnea (stopping of breathing) during sleep, both of which
worsen the quality of sleep. According to the global survey of
the obstructive sleep apnea syndrome (OSAS) as the main
syndrome in SAS, the population of the OSAS patients is
estimated as 78 million in USA, 242 million in China, and
31 million in Japan [5]. Even though the estimated number of
patients is large, many of them are unaware of their suffering
from SAS because of unconscious during sleep [6]. From
these facts, it is important to detect SAS earlier and to give
them appropriate treatment not for worsening their symptoms
and for decreasing national healthcare costs.

For early detection of SAS, the simple monitoring sys-
tem as the non-contacted system have been developed. For
example, the methods based on mattress sensor can detect
apnea according to the respiration amplitude computed from
the bio-vibration data which filtered in the frequent range of

*This work is supported by Ota Sleep Science Center, Japan.

11ko Nakari is with the Dept. of Informatics, the University of Electro-
Communications, Tokyo, Japan (iko0528 @cas.lab.uec.ac.jp)

?Keiki Takadama is a professor at the University of Electro-

respiration [7], [8]. These methods are effective for detecting
apnea but are difficult to detect hypopnea, which are often
found in SAS patients in early or middle stage of SAS
patients. To tackle this issue, Hwang et al. proposed the
method that can detect both apnea and hypopnea with mat-
tress sensor in the case of “abnormal” respiration by applying
the principal component analysis to detect it [9]. However,
it is difficult to detect the hypopnea and apnea in the
case of “forced” breathing (i.e., breathing with thoracic and
abdomen movement) which are very similar to the “normal”
respiration. What should be noted here is that the “forced”
breathing is a main symptom in addition to the “abnormal”
respiration, which means that the “abnormal” respiration
detection in the conventional method is insufficient to detect
SAS.

To tackle this the problem, this paper aims to propose
the novel SAS detection method that can detect SAS even
in the case of the “forced” breathing which are hard to be
detected by the conventional methods. For this issue, this
paper employs the bio-vibration data of a wide range of the
frequent waves which cover not only the respiration but also
the other waves. Through a comparison of the overnight bio-
vibration data between SAS patients and healthy subjects,
this paper also clarifies the characteristic difference of the
WAKE stage between SAS patients and healthy subjects
to explore a new symptom of SAS patients except for
apnea/hypopnea.

This paper is organized as follows. The next section
describes SAS. Section 3 proposes our SAS detection method
based on the frequency analysis of the bio-vibration data ac-
quired from mattress sensor. The human subject experiment
is conducted and the results are analyzed in section 4. Finally,
our conclusion is given in Section 5.

II. SLEEP APNEA SYNDROME

Sleep Apnea Syndrome (SAS) is one of the sleep disorders
that causes the long-term sleep dept by apnea/hypopnea
during sleep. Since apnea/hypopnea decreases oxygen sat-
uration, the brain senses danger and sleep becomes shallow
in order to return to normal breathing. As the definition,
apnea occurs when breathing stops more than 10 seconds,
and hypopnea occurs when the airflow of breathing becomes
less than the half of the normal breathing and SpO5 (oxygen
saturation degree in the blood) decreases by more than 4%.
To diagnos SAS, the international standard method called
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in Polysomnography (PSG) test and classifies the sleep
stages into the following six levels: WAKE, Rapid-Eye-
Movement (REM), Non-REM (NREM) 1 to 4 (from shallow
sleep to deep sleep). In the PSG test, electroencephalogram
(EEG), electrooculogram (EOG), electrogram (EMG), and
respiration of patients during sleep are measured, and these
biological data are analyzed by the R&K method to estimate
sleep stage. Fig. 1 shows the example of the sleep stage,
where the vertical axis indicates the sleep stage while the
horizontal axis indicates the sleep time. Figs. 1(a) and 1(b)
show the sleep stage of the SAS patient and the healthy
subject, respectively. As indicated by the red circle in Fig. 1,
the SAS patient causes the frequent WAKE stage.

The severity of symptoms of SAS is classified by Apnea
Hypopnea Index (AHI). It indicates the total number of
apnea/hypopnea events per hour of sleep. The severities are
summarized as follows: mild (5 < AHI < 15); moderate
(15 < AHI < 30); and severe (30 < AHI).

III. FREQUENCY ANALYSIS OF BIO-VIBRATION DATA
A. Overview

To discover the SAS characteristics from the bio-vibration
data during sleep, this paper focuses on the differences
among the multiple frequencies of the vibration waves in
the bio-vibration data. In this paper, TANITA sleep scan SL-
511 (Tokyo, Japan) was employed as the mattress sensor
for acquiring bio-vibration data, and places it under the
mattress in the bed. The sensor outputs one channel signal
and the sampling rate is 16Hz. The procedure of the SAS
detection method shown in Fig. 2 is summarized as follows:
1) measuring the overnight bio-vibration data; 2) applying
the short-time Fourier transform (STFT) into the overnight
bio-vibration data to calculate the average of the spectrum
over the night; and 3) detecting SAS according to the
SAS detection which is based on the averaged spectrum.
In particular, Fig. 2 1) shows the overnight bio-vibration
data acquired from the mattress sensor, where the vertical
axis indicates the vibration value while the horizontal axis
indicates the time. The larger the absolute sensor value, the
larger the body movement (e.g., the absolute sensor value
becomes large in the case of turning over). Fig. 2 2) shows
that an application of STFT into the overnight bio-vibration
data enables us to analyze what frequency of vibrations in a
short period of time are strongly included in the bio-vibration

Averaged spectrum

|

3) Designing the SAS detection index from averaged spectrum.

Fig. 2. Overview of the proposed SAS detection method.

data during sleep. The reason for calculating the averaged
spectrum is to eliminate the effect of accidental changes in
the spectrum. Note that STFT is often employed to analyze
the frequency of time-varying signals such as voices by a
Fourier transform (FT) while shifting the time window. In
this paper, Fast Fourier Transform (FFT) is employed instead
of FT for reducing computing time.

The above analysis of the bio-vibration data covers not
only the frequent range of the respiration and but also other
frequent range to clarify the characteristic of SAS patients
found in other than respiration.

B. Applying the STFT into Bio-vibration Data

The specific steps of the STFT process in the proposed
method are summarized as follows:

1) Applying FFT into the bio-vibration data with the 64
second window (note that the sampling rate of the
mattress sensor in our study is 16Hz, so that the data
size is 64 x16 = 1024) to convert the bio-vibration data
to the power spectrum. In this case, the bio-vibration
data is represented in 512 dimensions from O to 8Hz.
Fig. 3(a) shows the example of the power spectrum
computed from bio-vibration data, where the vertical
axis indicates the density of power spectrum while the
horizontal axis indicates the frequency. The frequency
band between 0.1Hz and 0.2Hz is related to respiration,
and the frequency band between 0.6Hz and 1.5Hz is
related to heartrates. As shown in the Fig. 3(a), the
mattress sensor is easy to capture the large densities
of the frequencies related to respiration, but is hard to
capture the densities of other frequencies because of
the small densities.

2) Converting the power spectrum into the logarithmic
spectrum (log10) to make it easier to analyze the small
densities of frequencies. Fig. 3(b) shows the example
of the logarithmic spectrum converted from the power
spectrum, where the vertical axis indicates the density
of the power spectrum and the horizontal axis indicates
the frequency. The only difference between Figs. 3 (a)
and (b) is the representation of the vertical axis, i.e.,
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Fig. 3. Examples of (a) power spectrum and (b) logarithmic spectrum.

the normal value in Fig. 3 (a) and the logarithmic value
in Fig. 3 (b).

3) The steps 1) and 2) are repeatedly conducted by
shifting the bio-vibration data every second. After
computing the logarithmic spectrum from the overnight
bio-vibrations data, they are averaged to analyze the
overnight trend of the bio-vibration data of a subject.

C. Differences in the Spectrum between SAS Patients and
Healthy Subjects

Figs. 4(a) and 4(b) respectively show the examples of
the averaged logarithmic spectrum of the SAS patient and
healthy subject, where the vertical axis indicates the density
while the horizontal axis indicates frequency. The blue and
red lines represent the averaged logarithmic spectrum and its
approximation formula (described later), respectively. As the
common tendency of the SAS patient and healthy subject
shown in Fig. 4, the density decreases as the frequency
increases. What should be noted here, however, is that the
SAS patient tends to have a larger density around 3Hz (like
a convex shape) which is not found in the healthy subject.

To extract this difference, this paper quantifies the de-
gree of convexity by computing the difference between the
waveform of the logarithmic spectrum and its approximation
formula. Here, it is defined as Degree of Convexity of the
Logarithmic Spectrum (DCLS). The approximation formula
is represented as follows,

§=ax®+bx®+cx+d (D

where a, b, ¢ and d are the coefficients to be estimated by
least squares method, ¢ represents the estimated density, and
x represents the frequency. DCLS is computed as follows,

N
DCLS = |yi — il @
=3

where y; indicates the density of the i-th frequency of the
averaged logarithmic spectrum, and ¢; indicates the value
of the approximation formula (1) when x = i. Note that
the densities of the averaged logarithmic spectrum of the
first and second frequencies (i.e., 8/512Hz and 16/512Hz)
are excluded when computing the approximation formula
because they are susceptible to noise. The values of DCLS
in Figs. 4(a) and 4(b) are 85.22 and 51.83, respectively. As
shown in this example, the DCLS value in SAS patients is
sufficiently larger than that in healthy subjects, which dif-
ference is employed to detect SAS in the proposed method.
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Fig. 4. Examples of averaged logarithmic spectrum

IV. EXPERIMENTS

To investigate the effectiveness of the proposed SAS
detection method based on DCLS, this paper conducted
the human subject experiment of the nine of SAS subjects
(including the five moderate and four mild patients. Age
information are not disclosed.) and the nine of the healthy
subjects (age from 20 to 60). The average number of epochs
(30 seconds) of sleep in SAS subjects are 934+57 and that
in healthy subjects are 665+130. PSG data of all subjects is
also measured to investigate relationship with the relationship
between sleep stage and bio-vibration data, in addition to
the bio-vibration data acquired from the mattress sensor
value (required to compute DCLS). The ethics community
of Ota General Hospital approved this study in agreement
with Helsinki’s declaration, and all the subjects signed their
consent.

A. Results and Discussions

Figs. 5 and 6 show the averaged logarithmic spectrum
(represented by the blue line) and its approximation formula
(represented by the red line) of the SAS and healthy subjects,
respectively. The alphabet in the upper right corner of each
graph, “A to I” and “a to i” represent the IDs of the SAS
subjects and healthy subjects, respectively. As shown in
Figs. 5 and 6, the averaged logarithmic spectrums of the
SAS subjects tend to have convex shape around 3Hz while
the healthy subjects have the smoother waveform than that
of SAS subjects.

Fig. 7 shows the DCLS values of all subjects, where the
vertical axis indicates the DCLS value, the horizontal axis
indicates the IDs of the subjects, and red line (manually
determined) indicates the threshold for the SAS detection.
The average of DCLS value in SAS subjects and healthy
subjects are 98.6+10.1 and 48.2+6.8, respectively. As shown
in Fig. 7, the SAS and healthy subjects are completely
separated with the threshold. From the results, the proposed
index, DCLS, has the potential of detecting SAS by just
sleeping on a mattress sensor.

To analyze the high density around 3Hz (2.5Hz to 3.5Hz),
the total density accumulated from the density of 2.5Hz to
3.5Hz (represented by the blue line) is added in the graph
of the overnight sleep stages (represented by the orange
line) in Fig. 8, where the left vertical axis indicates the
sleep stage, the right vertical axis indicates the accumulated
density, the horizontal axis indicates the time, and the
arrows on the upper side represent where apnea/hypopnea
occurred. As shown in Fig. §, the SAS subject tends to have
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Fig. 5. Results of SAS subjects: blue line indicates averaged logarithmic
spectrum and red line indicates approximation formula.
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Fig. 6. Results of healthy subjects: blue line indicates averaged logarithmic
spectrum and red line indicates approximation formula.

the large accumulated density in the WAKE stage, while
healthy subject has the large accumulated density only when
falling asleep and waking up. This analysis suggests that
the characteristics of the WAKE stage are different between
the SAS and healthy subjects. More importantly, the WAKE
stages with the large accumulated density do not always
occur before/after apnea/hypopnea but many of them are
found without the time of apnea/hypopnea. This implies that
the SAS subjects generate 3Hz waves in the WAKE stages,
which has a potential of being new symptom of the SAS
patients except for the apnea/hypopnea. The 3Hz wave may
deteriorate the quality of sleep and leads to have frequent
WAKE stage.

V. CONCLUSION

This paper proposed the novel SAS detection method,
which detects SAS patients according to the Degree of
Convexity of the Logarithmic Spectrum (DCLS) based on
the frequency analysis of the overnight bio-vibration data,
and investigated the effectiveness of DCLS through human
subject experiment by revealing the following implications:
(1) the SAS subjects tend to have the large density around
3Hz and the proposed method based on DCLS succeeded to
correctly separate the nine SAS subjects and the nine healthy
subjects; and (2) the characteristics of the WAKE stage are
different between the SAS and healthy subjects.

The future work is that it should be clarify the phe-
nomenon around 3Hz represents.
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Fig. 7. Results of DCLS computed from SAS subjects (A to I) and healthy
subjects (a to i).
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