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Abstract— The capability of Hyperspectral Imaging (HSI) in
rapidly acquiring abundant reflectance data in a non-invasive
manner, makes it an ideal tool for obtaining diagnostic in-
formation about tissue pathology. Identifying wavelengths that
provide the most discriminatory clues for specific pathologies
will greatly assist in understanding their underlying biochem-
ical characteristics. In this paper, we propose an efficient
and computationally inexpensive method for determining the
most relevant spectral bands for brain tumor classification.
Empirical mode decomposition was used in combination with
extrema analysis to extract the relevant bands based on the
morphological characteristics of the spectra. The results of our
experiments indicate that the proposed method outperforms
the benchmark in reducing computational complexity while
performing comparably with a 7-times reduction in the feature-
set for classification on the test data.

Index Terms— Hyperspectral imaging, feature selection, em-
pirical mode decomposition, pattern classification

I. INTRODUCTION

It is estimated that 1 out of 157 people is expected to
develop some variation of brain carcinoma within Canada
[1]. Surgery, chemotherapy, and radiotherapy are some of
the common treatments with surgery being the primary
option for tumor resection. The conventional surgical method
involves taking a biopsy of the location of interest and
removing as much of visible tumor as possible through re-
section. However, this does not guarantee complete removal
of the tumor tissue and often leaves behind cancer residue
that grows undetected [2]. Alternatively, over-resection of the
brain tissue can cause irreversible damage to functional brain
tissue. Novel tumor delineation techniques such as intra-
operative MRIs have been more effective in accurate delin-
eation but have limitations such as poor spatial resolution,
and extended surgery times [3].

As a noninvasive and nonionizing imaging modality, Hy-
perspectral Imaging (HSI) offers great potential in pathology
diagnostics due to its ability to quantify optical charac-
teristics of different biomaterials [4]. Certain biomaterials,
such as tumors, exhibit unique reflectance characteristics
at specific wavelengths. Identifying these wavelengths can
lead towards efficient classification of biomaterials and their
exact pixel-based location within hyperspectral (HS) images,
allowing for precise surgical operations.
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Recent advances have proven the efficacy of HSI-based
classification within medical applications such as disease
diagnosis [4]. In [5], an unsupervised classification system
using K-means clustering was used on HS data to determine
the exact location of tumors within breast cancer images.
Wang et al. utilized a grayscale segmentation algorithm on
HSI images to segment liver tumor with a high degree of
accuracy [6]. Additionally, there are a few related works
that have proposed the use of decomposition-based methods
within HSI analysis for medical diagnosis. Spectral unmixing
has been used in [7] to develop spatial maps for classifying
liver cancer data, and in [8] to estimate the concentration of
hemoglobin and melanin within tissue for cancer diagnosis.
However, these methods required prior knowledge of the
spectral characteristics of biochemicals or tissues.

With regards to utilizing HS analysis for brain cancer
diagnosis, Fabelo et al. developed various brain cancer
detection algorithms to be used on HS images within surgical
operations [9], [10]. However, these methods required high
computational cost as they had to incorporate all 128 bands
within their analysis. In [11], Martinez et al. proposed the use
of optimization algorithms to identify relevant wavelengths
that achieve the best multi-class pixel classification accuracy
while employing the least amount of spectral bands. Using
the same HSI brain database, they evaluated different opti-
mization algorithms and explored the effect of different clas-
sification parameters, such as sampling intervals and number
of features, on classification performance. This research work
will serve as a benchmark for the work presented in this
paper.

In this work, we introduce a novel computationally in-
expensive decomposition-based method for automatically
identifying spectral bands that result in a higher discrimina-
tion between different tissue types. By identifying the most
relevant spectral bands for tumor diagnosis, the size of HS
data can be reduced even further, making both acquisition
and analysis far less computationally expensive. This is done
by first using EMD (Empirical Mode Decomposition) to
quantify oscillatory characteristics of spectra into Intrinsic
Mode Functions (IMFs). Then, the most relevant spectral
bands for discriminating between different tissue types are
extracted by analyzing the extrema of the IMFs. Finally, the
reflectance values of the filtered spectra at the determined
relevant bands are then selected as features for pixel classi-
fication.
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Fig. 1. Framework of the proposed methodology.

II. METHODOLOGY
The framework of the proposed method is outlined in

Fig. 1. The procedure is comprised of three main stages;
data preprocessing, band selection, and pattern classification.
The data, selection of spectra, and the preprocessing steps,
were all similar to that of the benchmark to allow for a fair
comparison.

A. Database

Data used for our analysis was obtained from the HSI
Human Brain Database that was developed by researchers
at the University of Las Palmas de Gran Canaria, within
the context of the European project HELICoiD [12]. The
data consisted of HS images of brain tissues from patients
that had to undergo craniotomy for intra-axial brain tumor
resection or another brain surgery type at the University
Hospital of Gran Canaria Doctor Negrin (Spain). The ex-
tracted reflectance data from the images contained 826
spectral bands ranging between 400 and 1,000 nm, including
ground truth information for four classes: tumor, normal,
hypervascularized (or blood vessel) tissue, and background
pixels. More details about the dataset can be found in [12].

Twenty-six HS images obtained from sixteen adult pa-
tients were employed to extract labelled spectral reflectance
profiles. Spectra of a total of 269,967 labelled pixels were ex-
tracted, consisting of: 101,706 normal (38%), 11,054 tumor
(4%), 39,084 hypervascularized (14%), and 118,132(44%)
background pixels. Two different subsets were created simi-
lar to the procedure in the benchmark’s method [11] in order
to be able to compare the results. The first subset consisted
of extracting 4,000 pixels from all 26 images with equal
distribution among all four class types. This reduced dataset
was used within the band selection procedure. The second
subset consisted of six different HS images from four patients
affected by grade IV Glioblastoma brain tumor which are
then used as test data for pattern classification following a
leave-one-image-out cross-validation methodology.

B. Preprocessing

A series of preprocessing steps were performed over the
HS data to remove unwanted noise and obtain uniform
reflectance-based spectral signatures for feature extraction.
Firstly, images are calibrated using Equation (1) where Iraw

is the raw image, Iwhite is the white reference image,
and Idark is the dark reference image acquired using the
acquisition system [11].

CalibratedImage =
Iraw − Idark
Iwhite − Idark

(1)

A combination of spectral and spatial filtering techniques
was applied for noise removal. High-frequency noise intro-
duced by the HS camera is removed by applying a linear-
regression based smoothing filter to each pixel [13]. The
HS images are then spatially filtered by taking the average
reflectance value of neighboring pixels in order to remove
random noise.

The spectrum of each pixel is then averaged within the
spectral domain and downsampled to 128 bands, which was
determined as reported in [11] to be the optimal number
of bands as it provides a suitable compromise between
execution time and overall accuracy for pixel classification.
Finally, the data is normalized over each HS image by
clipping any outliers exceeding three standard deviations
from the mean of the spectra, centering the spectra around the
mean, and scaling of reflectance between 0 and 1. Apart from
the spatial filtering step, all other preprocessing steps are
practically the same as in [11], where the specific procedures
and rationale are explained in detail.
C. Discriminative Band Selection

The first stage of feature selection (from discriminative
bands) consists of applying EMD to each spectra. EMD is a
nonlinear adaptive signal analysis method for decomposing
signals into components based on the oscillatory character-
istics of the signals [14]. Compared to other decomposition
methods, such as wavelet decomposition, EMD was chosen
for this work as it provides a method of extracting oscillatory
characteristics using far less computational power. The basis
of EMD is a sifting procedure that splits a signal into IMFs.
These IMFs have two ideal characteristics; the number of
local extrema between each IMF differ by one at most,
and the mean value of the two envelopes extracted from
the extrema is zero. The procedure of generating IMFs is
described as follows:

1) Identifying Local Extrema: First, the spectra of a pixel
is fed as an input. Sifting begins with the identification
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Fig. 2. Selected Bands (red), identified by the proposed extrema-based
feature selection algorithm, on a sample decomposed IMF.

of local extrema, such as maxima and minima, of the
signal.

2) Calculating Residual: The extrema are interpolated
such that a connection of all the maxima forms the
upper envelop, whereas a connection of all the min-
ima forms the lower envelop. The mean of the two
envelopes is computed to obtain a residual signal.

3) Obtaining IMF: The residual is then subtracted from
the initial spectra to get the resulting detail. If the
sifting criteria is met, sifting stops and the remaining
detail is treated as the first IMF.

4) Sift on Residuals: The remaining residual is then used
as the signal and sifting using steps 2 and 3 are
performed to acquire the next IMF. This is iterated
until the maximum number of IMFs has reached.

The sifting criteria is determined by the relative tolerance
which is calculated using euclidean distance. A predeter-
mined threshold is set to stop sifting once the computed
mean falls under the threshold and the criteria is met. If
the sifting criteria is not met after step 3, steps 2 and 3 are
iterated again on the residual until the criteria is met and the
procedure can move on to generate following IMFs. The full
procedure is performed on the spectra of each pixel, until the
entire image has been decomposed. Since the sifting criteria
allows for including different frequency components within
an IMF, only the first IMF is considered and other IMFs
were not computed.

The second stage of feature selection involves identifying
the most relevant bands based on the discriminatory mor-
phology observed within the IMF. The critical, or turning,
points observed within the IMF are representative of the
morphological changes observed within the spectra. Thus,
an extrema-based featured selection algorithm is developed
to identify the locations of such critical points.

First, the average IMF of all spectra is computed for each
spectral band. Then, the extrema of the average IMF are
identified based on a specific prominence threshold. The
prominence describes the significance of an extremum based
on its height and location relative to neighboring peaks. More
specifically, the prominence of a peak, or local maximum,
is calculated by taking the difference of the IMF value of a
peak and the IMF value of the highest neighboring valley in
the signal. Prominence of the valleys, or local minima, are
determined by inverting the signal and performing the same
calculation.

Fig. 3. Histogram of the extrema count of all IMFs in the reduced training
dataset. The optimal bands selected by the proposed method are highlighted
in yellow and the 48 bands selected by the implemented benchmark method
are marked with a ’v’.

As the prominence threshold is increased, the number
of extrema identified decreases. Depending on how many
extrema are identified, the locations of these extrema are
selected as relevant bands of interest. The plot in Fig. 2
shows the distribution of the selected bands whereas Fig.
3 illustrates the coincidence of the selected bands with the
extrema count within each band for all 4,000 curves. The
optimal bands seem to coincide with the prominent extrema
of a significant number of curves, proving that they are highly
representative. Additionally, four of the seven optimal bands
were found to be mutual with the 48 bands suggested by the
implemented benchmark method.

Finally, the reflectance values of the filtered spectra at the
determined relevant bands are then selected as features for
pixel classification.

D. Pattern Classification

For fair comparison with the benchmark in [11], a linear
kernel Support Vector Machine (SVM) algorithm is em-
ployed to quantify the discriminatory ability of the selected
features. The classifier is implemented using the LIBSVM
package developed by Chang et al [15], along with leave-
one-out cross-validation on the reduced dataset and leave-
one-image-out cross-validation on the test dataset. In leave-
one-image-out cross-validation, labelled pixels of one image
from the test dataset are classified while the remaining five
images are used for training the classifier.

The results of the classification are evaluated quantitatively
by calculating the overall accuracy and determining its
computational time. Overall accuracy (OA) was calculated
using equation (2) where y is the predicted label and T is
the ground truth for sample k.

OA =
1

n

n∑
k=0

xk

{
xk = 1, if yk = Tk

xk = 0, if yk 6= Tk

(2)

The resulting six overall accuracies obtained using the
leave-one-image-out cross-validation method are averaged to
obtain a final overall accuracy.

III. RESULTS AND DISCUSSION
The experiments are performed within MATLAB version

R2019b running on a 64-bit Windows 10 workstation con-
sisting of Intel Core i7 CPU and 8GB of RAM. For fair
comparison, both the proposed method and the benchmark
method are computed on the same platform.
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TABLE I
PERFORMANCE OF VARIOUS PROMINENCE VALUES ON THE REDUCED

DATASET

Prominence (a.u.) 0.0025 0.0045 0.0125 0.0425 0.0485
# of bands generated 21 10 7 4 2
Overall Accuracy (%) 87.8 87.2 85.4 84.8 53.9

TABLE II
COMPARISON OF RESULTS

EMD-based Analysis Benchmark
# of bands 7 48

Reduced Data OA 85.4% 90.5%
Time 39.5s >60min

Test Data OA 73.36% 73.1%
Time 147.3s 335.5s

Table I displays the classification performance on reduced
training dataset for various prominence threshold used to
select the number of bands. As the prominence threshold
is increased, the amount of bands selected decreased. This is
attributed to the fact that less extrema are picked up as the
threshold is increased. Adjusting the threshold value allows
for limiting the number of features selected. Although the
accuracy results for the different prominence values was
similar, a value of 0.0125 is chosen within our analysis as
it provided a good balance between accuracy and number of
bands generated. The chosen values generated a total of 7
extreme values within the average IMF, resulting in 7 optimal
bands for classification.

Using the 7 bands, a final overall accuracy of 73.36%
is obtained with a total computation time of 186.8 (39.5 +
147.3) seconds. Table II summarizes these results along with
the results of the benchmark method which was implemented
and evaluated using our framework. Compared to the bench-
mark, the proposed method provides a much faster way of
extracting the most relevant bands. Additionally, it achieves
comparable classification accuracy using just 7 bands (in
comparison with 48 bands) at much less cost. Classifying
just the 3 bands that were non-mutual with the 48 benchmark
bands resulted in an overall accuracy of 62% on the test data,
demonstrating that this method could also identify relevant
bands that were undetected by the benchmark.

IV. CONCLUSION

In this paper, we proposed a novel decomposition-based
method of automatically identifying the most relevant spec-
tral bands for classifying HS images of in-vivo human
brain tumors. Firstly, EMD is applied within the spectral
domain of the data to extract IMFs that quantify oscillatory
characteristics of the reflectance data. Then, the most relevant
bands are identified based on the location of extrema present
within the average IMF. Classification results of the proposed
method shows that EMD enhances the feature selection
process for identifying relevant spectral bands for tissue clas-
sification. Additionally, it provided comparable classification
in terms of overall accuracy using the test dataset at much
reduced computational cost using only 7 bands. Future work
consists of testing the performance of this method on other

HS cancer data, fine tuning the parameter selection, and
determining band correlation with biochemical composition
of pathologies.

ACKNOWLEDGMENT

The authors would like to thank Natural Sciences and
Engineering Research Council of Canada (NSERC), Ryerson
University, and University of Las Palmas de Gran Canaria
(ULPGC) for supporting this research.

V. REFERENCES
[1] S. Canada, C. C. Society, et al., “Release notice-canadian cancer

statistics 2019.,” Health promotion and chronic disease prevention
in Canada: research, policy and practice, vol. 39, no. 8-9, p. 255,
2019.

[2] N. Sanai and M. S. Berger, “Operative techniques for gliomas and
the value of extent of resection,” Neurotherapeutics, vol. 6, no. 3,
pp. 478–486, 2009.

[3] M. Reinges, H.-H. Nguyen, T. Krings, B.-O. Hütter, V. Rohde, and
J. Gilsbach, “Course of brain shift during microsurgical resection
of supratentorial cerebral lesions: Limits of conventional neuronav-
igation,” Acta neurochirurgica, vol. 146, no. 4, pp. 369–377, 2004.

[4] G. Lu and B. Fei, “Medical hyperspectral imaging: A review,”
Journal of biomedical optics, vol. 19, no. 1, p. 010 901, 2014.

[5] Y. Khouj, J. Dawson, J. Coad, and L. Vona-Davis, “Hyperspectral
imaging and k-means classification for histologic evaluation of
ductal carcinoma in situ,” Frontiers in oncology, vol. 8, p. 17, 2018.

[6] J. Wang, M. Hu, M. Zhou, L. Sun, and Q. Li, “Segmentation of
pathological features of rat bile duct carcinoma from hyperspectral
images,” in 2018 11th International Congress on Image and Signal
Processing, BioMedical Engineering and Informatics (CISP-BMEI),
IEEE, 2018, pp. 1–5.

[7] I. Kopriva, G. Aralica, M. P. Hadžija, M. Hadžija, L.-I. Dion-
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