
  

 

Abstract— Despite continuous research, communication 

approaches based on brain-computer interfaces (BCIs) are not 

yet an efficient and reliable means that severely disabled 

patients can rely on. To date, most motor imagery (MI)-based 

BCI systems use conventional spectral analysis methods to 

extract discriminative features and classify the associated 

electroencephalogram (EEG)-based sensorimotor rhythms 

(SMR) dynamics that results in relatively low performance. In 

this study, we investigated the feasibility of using recurrence 

quantification analysis (RQA) and complex network theory 

graph-based feature extraction methods as a novel way to 

improve MI-BCIs performance. Rooted in chaos theory, these 

features explore the nonlinear dynamics underlying the MI 

neural responses as a new informative dimension in classifying 

MI. Method: EEG time series recorded from six healthy 

participants performing MI-Rest tasks were projected into 

multidimensional phase space trajectories in order to construct 

the corresponding recurrence plots (RPs). Eight nonlinear 

graph-based RQA features were extracted from the RPs then 

compared to the classical spectral features through a 5-fold 

nested cross-validation procedure for parameter optimization 

using a linear support vector machine (SVM) classifier. Results: 

Nonlinear graph-based RQA features were able to improve the 

average performance of MI-BCI by 5.8% as compared to the 

classical features. Significance: These findings suggest that 

RQA and complex network analysis could represent new 

informative dimensions for nonlinear characteristics of EEG 

signals in order to enhance the MI-BCI performance. 

Keywords— Brain-computer interface (BCI), Nonlinear 

dynamics, Motor imagery (MI), Graph-based feature 

extraction, Recurrence quantification analysis (RQA).  

I. INTRODUCTION 

Motor imagery (MI)-based brain-computer interface (BCI) 
systems have the capacity to provide an innovative 
alternative neural communication channel for patients 
suffering from severe neuromuscular disabilities such as 
amyotrophic lateral sclerosis (ALS), cerebral palsy, spinal 
cord injury, and stroke patients [1], [2]. Enhancing the 
performance of these systems depends crucially on 
improving the classification of the sensorimotor rhythms 
(SMR), including μ (8–12 Hz) and β (13–25 Hz) frequency 
band modulations during MI tasks. MI-BCIs primarily rely 
on classifying the oscillatory variations in the μ and β 
frequency bands, known as event-related desynchronization 
(ERD) and event-related synchronization (ERS) [3]. Spectral 
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analysis methods such as wavelet transforms, Fourier 
transforms, and autoregressive models have always been 
considered the traditional analysis methods for detecting MI 
patterns in MI-BCIs [4]. Despite continuous research efforts, 
EEG-based BCIs attain far from satisfactory performance 
levels. This is partially due to the inherent complex 
nonstationary nature of EEG, and to potential disease-specific 
abnormalities in patient’s electrical responses which impose 
additional challenges to the extraction of discriminative 
features from their MI responses [2], [5]. Novel analysis 
methods of MI-based EEG responses are required for the 
progress of the BCI field to fully exploit the underlying 
neural dynamics embedded in these complex signals and 
translate them meaningfully into an efficient means of 
communication. Recurrence quantification analysis (RQA) 
has been successfully applied as a powerful nonlinear 
analysis tool to measure the complexity of numerous 
biological signals, especially when traditional techniques fail. 
Due to RQA’s suitability for the analysis of short, noisy and 
nonstationary time series, in [6] RQA complexity measures 
were proposed as a new way to analyze event-related 
potentials by identifying transitions in the brain process 
during surprising moments on a single trial level as opposed 
to the traditional averaging of many trials, emphasizing the 
robustness of the RQA. Pitsik et al. [7] applied RQA to 
extract features, namely determinism (DET) and recurrence 
time entropy (RTE), to measure the reduction of EEG 
complexity during motor execution (ME) tasks. The extracted 
features were sensitive to the transitions from Rest to ME, 
suggesting the potential application of RQA to BCIs. 
However, their results were not accompanied by an 
evaluation of classification performance. Moreover, despite 
the overlap in the induced neural responses of MI and ME 
tasks [3], the complexity patterns identified for ME responses 
need to be verified for MI tasks for a practical MI-BCI 
system that can potentially be used by patients who have lost 
their voluntary muscle control and are unable to do any ME 
task. 

The aim of this study is to analyze the nonlinear dynamics 
and recurrence patterns underlying the MI-based EEG neural 
responses using RQA and complex network theory. Eight 
nonlinear graph-based RQA features were extracted from the 
recurrence plots (RPs) reconstructed from each one-
dimensional EEG time series measured at each channel and 
its adjacency matrix reinterpretation. EEG data were recorded 
from six healthy participants performing a MI-Rest task. 
Changes in the recurrence dynamics between MI and Rest 
quantified using these nonlinear features were evaluated and 
compared to classical linear spectral features to investigate 
their use as a new feature extraction method towards 
improving the performance of existing MI-BCI systems. The 
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performance was evaluated through a 5-fold cross-validation 
procedure using a linear support vector machine (SVM). The 
proposed analyses offer a new informative dimension in 
decoding MI neural signatures and discriminating it from 
Rest tasks for a MI-based BCI application which 
conventionally rely on linear spectral methods. 

II. METHODS 

A. Data Acquisition, Participants and Experimental 

Protocol 

EEG signals were recorded from 13 Ag/AgCl electrodes 
referenced to the left earlobe and amplified using a 
g.USBamp amplifier (g.tec medical engineering). The signals 
were digitized at 256 Hz and zero-phase bandpass filtered 1–
45 Hz. The EEG electrodes covered the pre-motor (FC3, 
FC4), primary motor (C1, C3, Cz, C2, C4), sensorimotor 
(CP1, CP3, CP2, CP4), and parietal (P3, P4) areas of the 
brain according to the 10–20 system. Data acquisition and the 
design of the MI paradigm were handled by BCI2000 
software [8]. Six healthy participants with no reported history 
of neurological disease attended two MI data recording 
sessions on separate days. The data recording was performed 
in the NeuralPC Lab, University of Rhode Island (URI) with 
Institutional Review Board (IRB) approval. Each session 
contained three runs, and each run consisted of 40 trials of 
MI task or Rest (20 trials each) based on a visual on-screen 
queue. The MI task involved imagining the left- or right-hand 
movement, and each MI trial was followed by a Rest trial. 
Each trial lasted for 10 seconds. None of the participants had 
previous BCI experience. The first session was used to 
familiarize the subjects with the task and the second session 
was used for data analysis. 

B. Data Preprocessing 

The data were re-referenced offline using a common 
average reference (CAR) [9]. Eye movement artifacts were 
removed using the extended Infomax Independent 
Component Analysis (ICA) algorithm [10]. The artifact-free 
EEG signal was then reconstructed after removing the 
predominant artifactual components identified by visual 
inspection. The data were then zero-phase bandpass filtered 
into the μ (8–12 Hz) and β (13–25 Hz) frequency bands for 
further analysis. The data were segmented into 10-sec trials 
synchronized with the appearance of the visual stimulus cues 
(Rest/LMI/RMI). For MI vs. Rest classification, trials were 
combined to form two sets with 60 trials for each condition 
of MI and Rest representing the two classes. Individual MI 
tasks that contained artifacts were automatically rejected 
based on subject-specific thresholds. For the classical linear 
spectral features, the average power spectral density (PSD) 
was calculated using the Welch method from the filtered 
EEG signals giving 𝑃𝑆𝐷𝜇  and 𝑃𝑆𝐷𝛽 extracted from each 

channel. This resulted into a total of 26 linear spectral 
features extracted from each trial from all the 13 EEG 
channels [11]. The features, within each frequency band, 
were extracted from an optimized response window that was 
performed for each subject in a nested 5-fold cross-validation 
classification procedure as explained in section E. 

C. Recurrence Quantification Analysis (RQA) 

In order to approximate the nonlinear neural dynamics 
underlying the MI and Rest tasks within the μ and β 

frequency bands separately, the bandpass filtered one-
dimensional EEG signal measured at each frequency band, 
each channel, and each trial was projected to a multi-
dimensional phase space based on Takens’ theorem of time-
delay embedding [12] using the following equation [13]: 

 𝑋𝑘 = (𝑥𝑘 , 𝑥𝑘+𝜏 , … , 𝑥𝑘+(𝑚−1)𝜏) 

where 𝑋𝑘 is the reconstructed phase space vector based on 
the observation 𝑥𝑘 of the bandpass filtered EEG time series 
(𝑥1, 𝑥2, …, 𝑥𝐿), τ is the time delay, 𝑚 is the embedding 
dimension, and 𝐿 is number of samples in the EEG time 
series. The time-delay parameter τ and the embedding 
dimension 𝑚 were estimated using the average mutual 
information (AMI) and the false nearest neighbor (FNN) 
methods respectively [14]. These parameters were calculated 
for each participant using only the training set in the 5-fold 
cross-validation procedure as explained in section E. The 
phase space reconstruction can be represented as an 𝑁 x 
𝑚 trajectory matrix Χ = (𝑋1, 𝑋2, … , 𝑋𝑁) where 𝑁 = 𝐿 −
(𝑚 − 1) is the number of states. Then, the recurrence plots 
(RPs) were created to visualize and quantify the recurrence 
patterns of the 𝑚-dimensional phase space trajectory Χ 
corresponding to each trial within each frequency band in a 
2-dimensional plot [14]. RPs were constructed by considering 
an 𝜀-neighborhood of states in phase space using the 
following equation: 

 𝑅𝑃𝑖,𝑗(𝜀) = Θ(𝜀 − ‖𝑋𝑖 − 𝑋𝑗‖)     𝑖, 𝑗 = 1, … , 𝑁 

where 𝑅𝑃 is the 𝑁 x 𝑁 recurrence plot, 𝑁 is the number of 
states in time, Θ is the Heaviside function, 𝜀 is the recurrence 
threshold determining the size of the neighborhood in state 
space, ‖∎‖ is the Euclidean norm, and 𝑋 is the reconstructed 
phase space vector. The recurrence exists when 𝑅𝑃𝑖,𝑗=1, (i.e., 

when the state space vectors at time 𝑖 and  𝑗 are within the 
same 𝜀-neighborhood). The choice of the ε-neighborhood 
threshold was based on previous studies’ recommendation 
that it should not exceed 10% of the maximum phase space 
diameter [12]. Therefore, the value of ε was optimized for 
each participant by choosing from four different thresholds, 
namely 3%, 5%, 7%, and 10% of the maximum phase space 
diameter within the nested cross-validation classification 
procedure explained in section E. As it is common to find 
small distances between points in the reconstructed phase 
space that are close in time, the Theiler window in this study 
was set to a value of (𝑚 − 1)𝜏 so that only points that are 
farther than (𝑚 − 1)𝜏 from the diagonal were taken into 
account in the evaluation of the RQA measures according to 
[15].  

 Eight nonlinear graph-based RQA features were extracted 

from the recurrence plots (RPs) reconstructed from each 

one- dimensional EEG time series measured at each channel. 

The features were: recurrence rate (RR), determinism 

(DET), maximum length of diagonal lines (LMAX), 

laminarity (LAM), maximum length of vertical lines 

(VMAX), and recurrence time entropy (RTE), extracted in 

order to quantify the vertical and diagonal line structures in 

the reconstructed RPs of each trial. In addition, to include 

the topological characteristics of the recurrence patterns, two 

features from complex network theory, namely the global 

clustering coefficient (CC) and transitivity (T) were 
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extracted from the adjacency matrix reinterpretation of the 

RP. The features were extracted from the RP corresponding 

with μ and β frequency bands separately using the following 

equations [16]: 

 𝑅𝑅 =
100

𝑁2
∑ 𝑅𝑃𝑖,𝑗

𝑁
𝑖,𝑗=1  

where 𝑅𝑅 is the recurrence rate, which is a measure of the 
density of recurrence points in the 𝑅𝑃, 𝑁 is the number of 
states. 

 𝐷𝐸𝑇 =
∑ 𝑙𝑃(𝑙)𝑁

𝑙=𝑙𝑚𝑖𝑛

∑ 𝑙𝑃(𝑙)𝑁
𝑙=1

 

where DET is a relative measure of the system’s regularity, 
defined as the percentage of recurrence points forming 
diagonal structures with respect to all recurrence points in 
𝑅𝑃. 𝑃(𝑙) is distribution of diagonal lines of length 𝑙, and 
𝑙𝑚𝑖𝑛 = 2 is the length of the shortest diagonal [12]. 

 𝐿𝑀𝐴𝑋 = max ({𝑙𝑖: 𝑖 = 1 … 𝑁𝑙}) 

where 𝐿𝑀𝐴𝑋 is the maximum length of diagonal structures, 

𝑙𝑖is the length of diagonal line 𝑖, and 𝑁𝑙  is the total number of 

diagonal lines. 

 𝐿𝐴𝑀 =
∑ 𝑣𝑃(𝑣)𝑁

𝑣=𝑣𝑚𝑖𝑛

∑ 𝑣𝑃(𝑣)𝑁
𝑣=1

 

where 𝐿𝐴𝑀 is the laminarity, representing the probability of 

occurrence of laminar states in the system, 𝑃(𝑣) is the 

distribution of vertical lines of length 𝑣, and 𝑣𝑚𝑖𝑛 = 2  [6]. 

 𝑉𝑀𝐴𝑋 = max ({𝑣𝑖 : 𝑖 = 1 … 𝑁𝑣}) 

where 𝑉𝑀𝐴𝑋 is the maximum length of vertical structures, 

i.e., the longest duration of the laminar states, 𝑣𝑖  is the length 

of vertical line 𝑖, and 𝑁𝑣 is the total number of vertical lines. 

 𝑅𝑇𝐸 = − ∑ 𝑝(𝑡𝑤) 𝑙𝑛 𝑝(𝑡𝑤)
𝑇𝑚𝑎𝑥
𝑡𝑤=1  

where 𝑅𝑇𝐸 is the recurrence time enropy, i.e., the entropy of 

the “white” (non-recurrent) vertical lines indicating 

recurrence times 𝑡𝑤. 𝑝(𝑡𝑤) = 𝑃(𝑡𝑤)/𝑁𝑤 is the estimated 

probability of a recurrence time 𝑡𝑤 and 𝑃(𝑡𝑤) is distribution 

of recurrence times [7]. 

 
To extract the topological characteristics of the trajectory 

in phase space, the RP was reinterpreted as a binary 
adjacency matrix of undirected, unweighted complex 
network [17]. Each node of the network corresponds to an 
EEG sample in time, and edges are conveniently represented 
by the recurrence links, based on the ε-neighborhood in phase 
space [18]. The relationship between the RP and the 
corresponding adjacency matrix A is as follows: 

 𝐴𝑖,𝑗 = 𝑅𝑃𝑖,𝑗 − 𝛿𝑖,𝑗 

where 𝛿𝑖,𝑗is the Kronecker delta. 𝐴𝑖,𝑗 = 1 if vertex 𝑖 connects 

to vertex 𝑗, and 𝐴𝑖,𝑗 = 0 if the edge (𝑖, 𝑗) does not exist, i.e., 

there is no recurrence of the system’s state at time 𝑖 and 𝑗. 
Since in our study we considered a theiler window, the 𝑅𝑃 
was regarded to be the adjacency matrix 𝐴 for further 
analysis. From 𝑅𝑃, two graph-based features were defined as 
follows [19]: 

 𝐶𝐶 = ∑
𝐶𝑣

𝑁

𝑁
𝑣=1  

where 𝐶𝐶 is the global clustering coefficient introducing a 
new recurrence aspect of the RP as it represents the 
probability that two recurrences of any state are also 
neighbors, and 𝐶𝑣is the local clustering coefficient defined 
for each node 𝑣 [19].  

 𝑇 =
∑ 𝐴𝑖,𝑗𝐴𝑗,𝑘𝐴𝑘,𝑖

𝑁
𝑖,𝑗,𝑘=1

∑ 𝐴𝑖,𝑗𝐴𝑘,𝑖
𝑁
𝑖,𝑗,𝑘=1

 

where 𝑇is transitivity, providing an effective measure for the 
global dimensionality of the underlying dynamical system 
[20]. 

In summary, a total of 208 nonlinear graph-based RQA 
features were extracted from each EEG trial from both μ and 
β frequency bands (i.e., eight features were extracted from 
each frequency band from each of the 13 channels) to 
quantify the nonlinear dynamics underlying the MI-Rest 
tasks. The features were extracted from optimized response 
windows within each frequency band for each subject 
through a nested cross-validation classification procedure as 
explained in section E.  

D. Feature Selection 

As the dimension of nonlinear features is relatively high, 
a feature selection scheme based on minimal Mahalanobis 
distance and maximal inter-feature correlation (mMMC) was 
adopted to exclude non-relevant and highly correlated 
features in order to avoid overfitting [21]. Moreover, mMMC 
was used to optimize the selection of the discriminative 
frequency band according to each subject’s individual MI 
response as it was applied to the concatenated features from 
the μ and β frequency bands extracted using both the 
conventional spectral methods and the graph-based nonlinear 
RQA methods respectively. For this feature selection scheme, 
first, the features are sorted by their descending Mahalanobis 
distance, excluding those features that are lower than a 
defined threshold. Then, for the remaining features, the 
maximum Pearson correlation between that feature and the 
other features is determined and the feature is excluded if the 
value is above a certain correlation threshold. In this study, 
the Mahalanobis distance was set to 0.15, and the correlation 
threshold value was chosen from the interval of [0.84, 0.9] 
following previous studies [22]. 

E. Classification Procedure 

Linear SVM, commonly used in MI-BCI, was used to 
evaluate the performance of each subject using a nested 5-
fold cross-validation procedure to avoid biased estimation of 
the generalization error. To account for the high response 
variability in the neural data, the nonlinear RQA parameters 
as well as the classification parameters were estimated for 
each of the outer 5 cross-validation folds independently. The 
time delay τ and the embedding dimension 𝑚, were directly 
calculated using only the training set of each of the 5 cross-
validation folds. The choice of the ε threshold was optimized 
among 3%, 5%, 7%, and 10% of the maximum phase space 
diameter thresholds using a nested 5-fold cross-validation 
procedure implemented as follows: for each of the outer 5 
cross-validation folds, the training set was used to optimize 
the choice of ε based on the global peak of a nested 5-fold 
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cross-validation procedure. Hence, the optimized ε was 
estimated separately for each of the 5 outer cross-validation 
folds based only on the corresponding training set.  

The response window was similarly optimized in the 
nested cross-validation inner-loop procedure for both the 
linear spectral features and the nonlinear graph-based RQA 
features. 2-sec, 5-sec, and 10-sec windows from each 
frequency band were considered for feature extraction and 
selection. For example, for a 10-sec window, features were 
extracted from the whole 10-sec trial bandpass filtered in the 
μ band and then concatenated with the features extracted 
from the 10-sec trial bandpass filtered in β band before the 
feature selection procedure. As each frequency band has its 
own separate dynamics, and with the β frequency band 
having higher frequency, the combinations of longer μ-band 
response windows with shorter β-band response windows 
were also considered resulting in a total of six possible 
response window optimizations to be considered in the nested 
cross-validation optimization. Due to the large number of 
nonlinear features (208 nonlinear graph-based RQA features 
for each trial), mMMC was applied to select the features 
extracted from each channel separately, as explained in 
section D, and the selected features from each channel were 
then concatenated for classification. For the linear features, 
mMMC was applied directly to the 26 features concatenated 
from all the channels. The performance was evaluated using 
2 metrics: accuracy and F-score. The final optimized 
classification results are reported separately for each subject 
and averaged over all the 5 outer cross-validation folds. 

III. RESULTS 

Table I shows the optimized classification performance 
for each subject, comparing both the nonlinear RQA and 
graph-based feature extraction approach to the conventional 
linear PSD features. The table illustrates the optimized 
averaged 5-fold classification accuracy and the F-score for 
both feature extraction methods. As shown in this table the 
obtained average accuracies were 80.2%±6.5% and 
74.4%±7.4% using nonlinear and linear features respectively.  

For the linear PSD features, the optimized response 
window in the μ-band was 6.4±3.5 sec, 10.0±0.0 sec, 8.0±2.7 
sec, 8.0±2.7 sec, 9.0±2.2 sec, and 5.2±4.4 sec for each subject 
respectively averaged across 5-fold cross-validation runs. For 
the β-band, the average optimized response window was 
4.4±1.3 sec, 10.0±0.0 sec, 8.0±2.7 sec, 7.0±2.7 sec, 7.4±3.7 
sec, and 5.2±4.4 sec for each subject respectively. The 
median number of selected linear PSD features was 15, 7, 11, 
15, 13, and 4 for each subject respectively across all folds, 
and an average of 10.8±4.9 selected features across subjects. 

Table II shows the optimized RQA parameters and response 
window optimization results for both μ and β-bands along 
with the median of selected number of nonlinear features 
across 5-fold cross-validation runs for each subject.  

Fig. 1 illustrates the discriminative ability of the nonlinear 
features by comparing their frequency of selection in the 
optimized classification performance across all subjects and 
all folds. As shown, the LMAX and VMAX are the features 
with the highest frequency of selection across all subjects.  

IV. DISCUSSION 

In the present work, we evaluated the performance of a 
new set of graph-based RQA features for MI-BCI binary MI 
vs. Rest classification. Rooted in chaos theory, and the 
literature of nonlinear system dynamics, by characterizing the 
nonlinear recurrence patterns in μ and β spectral bands in 
phase space through graph-based RQA and complex network 
theory, these features introduce a new informative dimension 
to the analysis of EEG-based MI neural responses. Our 
findings demonstrated the feasibility of nonlinear graph-
based RQA features for MI-BCI systems achieving a higher 
average accuracy (~80%) when compared to conventional 
linear spectral features (~74%). Our study investigated the 
performance of various RQA features. RR, DET, LMAX, 
LAM, VMAX, and RTE can all be indicative measures of the 
complexity of the neural system’s dynamics. DET is a 
relative measure of the system’s predictability and regularity 
(i.e., state of relative order). LMAX is an important measure 
of system’s complexity as it is inversely related to the most 
positive Lyapunov exponent, which is a key indicator of 
chaos [12], RTE is also a measure of system’s complexity as 
it is related to the Kolmogorov-Sinai entropy [23]. LAM and 
VMAX are analogous to DET and LMAX. However they are 
more pronounced for chaos-chaos transitions and were 
successfully applied to EEG data along with DET in [6] to 

TABLE II.  RECURRECE QUANTIFICATION ANALYSIS PARAMETER OPTIMIZATIPON 

Participant 

No. 

Optimized  

μ-neighborhood 

threshold (ε) 

Optimized  

β-neighborhood 

threshold (ε) 

μ-time 

delay 

(τ) 

β-time 

delay 

(τ) 

μ- & β-

embedding 

dimension 

(m) 

# Selected 

features 

(median) 

Optimized 

μ – 

response 

window 

Optimized 

β – 

response 

window 

Subject-1 0.07±0.02 0.05±0.02 6.0±0.0 3.0±0.5 4 29 6.4±3.5 4.4±1.3 

Subject-2 0.07±0.03 0.07±0.04 6.0±0.0 3.0±0.0 4 20 10.0±0.0 10.0±0.0 
Subject-3 0.05±0.03 0.06±0.02 6.0±0.0 3.0±0.0 4 26 10.0±0.0 9.0±2.2 

Subject-4 0.07±0.03 0.03±0.01 6.0±0.0 3.0±0.4 4 12 10.0±0.0 9.0±2.2 

Subject-5 0.06±0.02 0.06±0.03 6.0±0.3 3.0±0.1 4 14 9.0±2.2 6.4±3.5 
Subject-6 0.05±0.01 0.05±0.01 7.0±0.0 4.0±0.0 4 12 8.0±2.7 8.0±2.7 

Mean±SD 0.06±0.01 0.05±0.01 6.2±0.4 3.2±0.4 4.0±0.0 18.8±7.4 8.9±1.5 7.8±2.1 

 

TABLE I.  OPTIMIZED CLASSIFICATION PERFORMANCE OF NONLINEAR 

RQA AND GRAPH-BASED FEATURES VS. LINEAR PSD SPECTRAL 

FEATURES  

Participant 

No. 

 

Nonlinear 

Features 

Accuracy 

(%) 

 

Nonlinear 

Features 

F-score 

 

Linear 

Features 

Accuracy 

(%) 

 

 

Linear 

Features 

F-score 

Subject-1 80.0 79.2 78.8 80.2 

Subject-2 87.1 86.1 85.9 83.8 
Subject-3 69.3 70.0 66.7 67.2 

Subject-4 77.9 76.5 76.8 76.3 

Subject-5 80.0 75.6 70.0 66.9 
Subject-6 86.7 84.7 68.3 70.2 

Mean±SD 80.2±6.5 78.7±6.0 74.4±7.4 74.1±7.1 
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discriminate single trial event-related potentials. These 
features quantify transitions in the recurrence structures in 
phase space and provide a measure of complexity of the 
underlying nonlinear dynamics [16]; hence, they were 
successfully used to discriminate between MI and Rest tasks 
in our study. Our results provide evidence that these features 
can potentially add valuable information to conventional MI-
BCI studies. DET and RTE features were found sensitive to 
MI neural responses similar to ME as proposed in [7]. 
However, other features such as LMAX, VMAX, LAM, and 
RR were more frequently selected across subjects and cross-
validation folds. Our results also suggested that the 
topological aspect of the recurrence structures, reflected in 
CC and T, is valuable for the classification performance.   

Future works need to further support our interpretations 
of the proposed nonlinear features as a new informative 
dimension for enhancing the BCI performance by validating 
nonlinearity in the dataset using a surrogate procedure. In 
addition, conducting a proper statistical evaluation of the 
proposed nonlinear features, as well as investigating other 

variations of graph-based nonlinear dynamics. Exploring 
powerful feature selection and classification algorithms 
should also be considered to extract robust discriminative 
patterns from a high dimensional nonlinear data. 

V. CONCLUSION 

This study focused on the evaluation RQA and graph-based 

features for a binary MI-BCI classification task. The 

performance evaluation revealed an average improvement of 

5.8% as compared with the classical linear features. 

Optimized classification performance was achieved across 

both μ and β frequency bands and for various response 

window lengths ranging from 4.4-sec to 10-sec across 

subjects. Our results showed that the proposed nonlinear 

features can potentially enrich MI-BCI performance by 

exploiting the nonlinear neural dynamics embedded in MI 

neural responses beyond the classical linear spectral 

characteristics. These results suggest that nonlinear features 

can add a valuable dimension to the analysis of EEG signals 

for the improvement of MI-BCI system performance. 
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Figure 1.  Selection frequency of the nonlinear RQA and graph-based 

features in the selected feature sets across all folds for each subject. 
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