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Abstract— One of the most common injuries in athletes is that
of the Anterior Cruciate Ligament (ACL). This type of injury is
commonly analyzed by observing the dynamics of the body in
the sagittal plane. ACL injury can be indicated by a the small
knee flexion angle and a small angular position of the trunk at
start of leg-landing task. In this article a 4 Degrees of Freedom
(DOF) dynamic model of the human body restricted to the
sagittal plane is presented. The model represents the movement
of the legs, an equivalent ligament between the tibia and femur,
thighs and trunk. It is used to represent the recovery of vertical
posture during a double leg landing task. Initial conditions in
velocity are calculated as those resulting from a free fall from
a height H. The results obtained from the simulation were
satisfactory since the recovery of the vertical posture is achieved
and it is possible to approximate the deformation suffered by the
equivalent ligament. In conclusion, this model can be very useful
in determining the behavior of the ligament and eventually, the
possibility of injury after a double-leg landing task.

I. INTRODUCTION

Previous work investigating the most common injuries in
the sport community include [1]–[4]. It has been concluded
that injuries are most common in the lower limbs especially
the knee and ankle. Additionally, these studies point to knee
sprain as the most common injury. Within them, the Ante-
rior Cruciate Ligament (ACL) is most often concerned [5].
Seventy percent of ACL injuries are sports related. Women
who play sports such as basketball volleyball or soccer have
a four times higher incidence of ACL injury than men.

ACL injury does not impact the population’s health, but
also impacts the economy. In United States, it is estimated
that about 38,000 ACL injuries occur in women per year,
where their cost is estimated to be $17,000 dollars per injury,
which means that the total cost of injuries could be close to
$646 million dollars annually [6]. Because of this, it is of
vital importance to conduct studies that allow the prevention
of this injury in female athletes.

ACL injury has been the subject previous studies, where
the objective is to find a relationship between kinematic
and kinetic parameters of the human body for a given task
and the risk of injury to the ligament. It has been observed
that injuries due to intrinsic factors are more common than
injuries due to extrinsic factors [1], [6], [7].

Hewett et al. [6] conducted a study of the kinematics (joint
angles) and kinetic loads (joint moments) of the knee during
a jump-landing task on 205 female athletes. They found a
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Fig. 1: Schematic 4 DOF dynamic model of legs-ligament-
thighs-trunk.

correlation between the kinematic and kinetic parameters
and injury. Their results show that there is a difference in
abduction angle of knee, abduction moment of knee, flexion
angle of knee and angular intern displacement of tibia (valgus
deformity) during the landing. The values of abduction angle,
abduction moment and angular intern displacement of tibia
were greater for the injured population than for non-injured
athletes. Conversely, the value of flexion angle of knee were
smaller in the injured population than non-injured.

II. METHODOLOGY

A. Sagittal Plane Dynamic Model

The present study aims to determine the behavior of the
knee ligaments and the articular kinematics of the joints
associated to the double-leg landing task. To this end, a 4
Degrees of Freedom (DOF) model in the sagittal plane was
developed. It consists of 3 rigid bodies: i) legs, ii) thighs
and iii) trunk, and an equivalent ligament between the leg
and thigh segments. The equivalent ligament represents the
ligaments: (a) ACL, (b) Posterior Cruciate Ligament (PCL),
(c) Medial Collateral Ligament (MCL) and (d) Lateral Col-
lateral Ligament (LCL). Additionally, muscles were added
to each of the segments of the model in order to recover the
upright posture. Both muscles and ligaments are represented
as viscoelastic elements in a Kelvin-Voigt model [8]–[10].
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To solve the proposed model, the schematic model shown
in Fig. 1 is used. The segment OA represents the legs with
mass m1 and inertia at the center of mass (COM) I1, the
segment BC represents the thigh segment with mass m2

and inertia above the center of mass I2, CD is represents
the head-arms-and-trunk with mass m3 and inertia at COM
I3 and the segment AB represents the equivalent ligament
of the knee. The angles θ1, θ2 and θ3 are the orientations of
the leg, thigh and trunk segments respectively, while x is the
deformation of the equivalent ligament, {k1, c1}, {k2, c2}
and {k3, c3} are the stiffness and damping components asso-
ciated with the muscles of the leg, thigh and trunk segments,
respectively, {kL, cL} are the viscoelastic components of the
equivalent ligament.

In order to model the system’s dynamics, the Euler-
Lagrange equations will be used. For this it is necessary
to compute the kinetic T , potential V and dissipated D
energies. They can be obtained as:
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where p represents the total number of rigid bodies in the
system, mi, vi, Ii, θ̇i, hi, ki, θi, ci and θ̇i are the ith rigid
body mass, COM velocity, inertia with respect COM, angular
velocity, height of COM with respect to O, muscular stiff-
ness, angular position and muscular damping, respectively. In
(2) term VL represents the potential energy in the equivalent
ligament. This term can be described as in (3), which is based
on Stanev work [9], where kL represents the stiffness of the
equivalent ligament, x is its deformation, ei is the non-linear
strain level parameter, and L0 the undeformable length of the
ligament. The stiffness value kL was calculated from the sum
of the stiffness values of the four ligaments associated with
the knee joint and the undeformed length L0 is obtained from
the geometric mean of the undeformed lengths of the knee
ligaments. Finally, cL represents the ligament’s damping and
ẋ is the ligament’s deformation velocity.

Applying the Euler-Lagrange methodology to (1) - (4), the
equations of motion are obtained as:

M (~q) ~̈q + C
(
~q, ~̇q
)
~̇q + K (~q) ~q + ~G (~q) = ~τ (5)

where ~q represents the generalized coordinates vector ~q =
[θ1 θ2 θ3 x]

T , M is the inertial matrix, C is the Coriolis

Matrix, K is the stiffness matrix, ~G is the gravity vector
and ~τ represents articular joint torques vector.

B. Estimating the systems initial condition

As mentioned above, it is desired to know the behavior
of the limbs and knee ligaments of the human body in the
sagittal plane to the double-leg landing task. Therefore, the
aim is to know the behavior of the system after a fall of
a height H. It can be assumed that the impact of the feet
with the ground is merely plastic, i.e. the coefficient of
restitution between the feet and the ground is e = 0. To
find the solution for (5) it is necessary to first determine the
initial conditions for position and velocity of each of the
generalized coordinates. The initial conditions in position ~q0
are assumed constant during the landing task. However, the
initial conditions in velocity ~̇q0 after impact are not known,
therefore an equivalent one degree of freedom θ system will
be used, consisting of a single rigid body with mass M ,
which is calculated how the sum of rigid bodies’ masses,
inertia with respect to its center of mass IT calculated from
Steiner Theorem and a distance from the pivot point to
its center of mass R, which is obtained using the distance
between point O and COM. The initial velocity after impact
θ̇ of the equivalent system is calculated from the analysis
of the amount of motion at the instant of impact with the
ground.

Since the original system has 4 degrees of freedom, it is
necessary to find 4 equations that relate the original system
to the equivalent system. The equations to be used will be: (i)
velocity of the center of mass in the direction ı̂, (ii) velocity
of the center of mass in the direction ̂, (iii) momentum and
(iv) total energy.

The equations of the COM velocity and the quantity of
motion are linear with respect to the initial velocity vector
~̇q0. However, the equation of the total energy is not linear.
Therefore, a Taylor series expansion will be used. From this
analysis the following equation was obtained:

J~̇q0 = ~f (6)

where J represents the velocity Jacobian of the equations
described above and ~f represents the vector of the remaining
terms of the Taylor series expansion.

III. RESULTS

In this section (5) will be solved in order to determine
the position vector ~q. A subject of total mass m and height
h was assumed. Winter’s anthropometric tables [11] were
used to find the mass and geometry values of each of
the model’s segments. The viscoelastic properties of the
ligaments were obtained from the works of [12] and [9].
However, the proposed model considers a single equivalent
ligament, because of this the stiffness and damping values
are taken as the sum of the stiffness and damping values
of the ligaments. Finally, the stiffness and damping values
of the muscles were based on our previous work [13]. The
articular torques variables were defined using exponential
function with form: τi (t) = (τ0)i · ebt where τi represents
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Fig. 2: Behavior of the generalized coordinates θ1, θ2, θ3 and x, during one second after the double-leg landing task.

Parameter Value Parameter Value
m 70 kg c1 100 N-m-s/rad
h 1.67 m c2 150 N-m-s/rad
k1 1800 N-m/rad c3 200 N-m-s/rad
k2 2000 N-m/rad cL 4000 N-s/rad
k3 3300 N-m/rad τ1 10 N-m
kL 48200 N τ2 10000 N-m

τ3 10000 N-m

TABLE I: Values to perform the calculation of the proposed
model.

Parameter Value Parameter Value
θ1 0.5236 (30) rad (deg) θ̇1 36.3362 rad/s
θ2 0.9599 (55) rad (deg) θ̇2 58.3886 rad/s
θ3 0.5760 (33) rad (deg) θ̇3 29.0784 rad/s
x 0.01 m ẋ 13.3099 m/s

TABLE II: Initial conditions to solve the proposed model.

the i-th articular torque, τ0 is the maximum articular torque
value, the constant b was defined as b = −100, so that the
torques behave as an impulse function and torque function
be continuum in order to facilitate the solution in simulation.
The values of (τ0)i were chosen arbitrarily, so that the
resulting kinematics are as close as possible to the motion of
the human body in the sagittal plane observed in the available
literature [14], [15]. TABLE I shows the values used to solve
the equations of motion.

The initial conditions of the angular positions of the
segments of the model were taken from the literature [14].
The initial deformation of the ligament (x) was calculated
from data taken from [9], and finally the initial conditions in
velocity were calculated utilizing the equation (6) assuming
a height in free fall of 0.5 m. TABLE II shows the initial
conditions.

In order to solve the equation of motion (5) a 4th order
Runge-Kutta method is applied for a simulation time of 1

second. Fig. 2 shows the behavior of generalized coordinates
vector.

The Fig. 3 shows the kinematics evolution of human body
in the sagittal plane at three different time values: 1) t = 0
s, 2) t ≈ 0.5 s, t = 1 s.

IV. DISCUSSION

Since Fig. 3 shows the evolution of human body movement
and conclude with angular joints near of equilibrium point
(θi ≈ 0), the results obtained appear satisfactory. That is, it
is possible to know the behavior of the leg-ligament-thigh-
trunk system using a dynamic model in the sagittal plane. It
is observed that the behavior of the angular positions are as
expected. Therefore, it could be believed that the the values
of the viscoelastic components of the muscles were chosen
appropriately for the simulation.

However, in Fig. 2 it is observed that the values of
the ligament deformation x take negative values, i.e., the
thigh and leg segments share the same space. This error is
attributed to the failure to consider the impact suffered by
the femur with the tibia, as suggested by Abdel-Rahman et
al. [12].

One of the objectives of the model presented here is to
know the deformation of the ligaments, especially the ACL
due to is common place in injury. Future work would aim
at estimating the deformations of the four ligaments of the
knee from the deformation of the equivalent ligament.

Another possible use of this model is the estimation of
viscoelastic parameters of muscles and ligaments, as well as
inertial parameters of the human body in the sagittal plane.

V. CONCLUSIONS

The model presented here could be very useful for the
analysis of ACL deformation and the analysis of upright
posture recovery. The main objective of this model is to
be used to analyze injuries in ACL ligament and determine
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Fig. 3: Evolution of themovement after double-leg landing task. Position at a) t = 0 s, b) t ≈ 0.5 s and c) t = 1 s.

a possible correlation with joint kinematics in the sagittal
plane.
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