
  

  

Abstract—The human neuro-musculoskeletal system 

constantly deploys passive (e.g., posture adjustment) and active 

(e.g., muscle co-contraction) control strategies to regulate upper 

limb impedance and stability while interacting with the outside 

world. Upper limb impedance has been assessed through in vivo 

experiments and model-based simulations. The experiments are 

practically limited to small samples of able-bodied subjects and 

few limb postures, and model-based approaches have mostly 

used simplified upper limb models. Our objective was to develop 

and validate a computational approach to estimate upper limb 

impedance parameters - stiffness, viscosity, and inertia - at the 

endpoint (i.e., hand) using a neuromusculoskeletal model with 

realistic geometry. We added a planar manipulandum to an 

existing upper limb model implemented in OpenSim (version 

3.3) and used contact modeling to attach the manipulandum’s 

handle to the musculoskeletal model's hand. The hand was 

placed at several locations lateral to the shoulder joint along 

anterior/posterior and medial/lateral axes. At each location, 

during forward dynamics simulations, the manipulandum 

applied small perturbations to the hand in eight different 

directions. The spatial variation of the computed, model-based 

impedance parameters was similar to that of experimentally 

measured impedance parameters. However, the overall size of 

the stiffness and viscosity components was larger in the model 

than from experiments. 

Clinical Relevance— Computational modeling and 

simulations can estimate upper limb impedance properties to 

complement and overcome the limitations of experiments, 

especially for clinical populations. The computational approach 

could ultimately inform new interventions and devices to restore 

limb stability in people with shoulder disabilities. 

I. INTRODUCTION 

The mechanical impedance of the human upper limb 
describes the limb's ability to resist moving when it is 
displaced from an equilibrium position [1], [2]. It is well-
established that the human neuro-musculoskeletal system 
regulates limb impedance both passively (e.g., posture) and 
actively (e.g., muscle contraction) to maintain stability while 
manipulating objects and interacting with the environment [3]. 
There are many common orthopedic (e.g., rotator cuff tear) [4] 
or neurological (e.g., stroke) injuries that often lead to 
devastating shoulder disability. There is evidence that such 
disability can impair the passive and active mechanisms of the 
neuro-musculoskeletal system for impedance modulation, 
destabilizing the shoulder joint and hand position [5]. 

Impedance can be characterized by physical parameters 
stiffness, viscosity, and inertia from engineering dynamics [2]. 
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The stiffness and viscosity components originate from 
properties of the musculoskeletal system's passive and active 
tissues and can be further regulated by changing levels of 
muscle activation and co-activation. However, the inertia only 
depends on the posture and physical properties of the upper 
limb, like mass and length [6]. The standard technique to 
identify the impedance parameters is to build a second-order 
linear model from the experimental hand force field data [6], 
[7]. The hand force field describes the relation between 
displacements and restoring forces when the hand is perturbed 
about a given equilibrium position. Perturbations are typically 
applied to the hand by a planar robotic manipulandum. 
Impedance can be estimated either at the endpoint (i.e., hand) 
or at the joint level (i.e. shoulder and elbow) [3]. 

Impedance has been either measured experimentally or 
estimated computationally. Due to practical reasons, 
experimental studies have limited testing to small numbers of 
able-bodied subjects (due to risk of injury to people with 
disability), trials (due to subject fatigue), and limb postures. At 
the same time, model-based studies have mainly used 
simplified models (e.g. with less muscles than the biological 
limb) [8] or only estimated the stiffness parameter using 
muscle short-range stiffness modeling [9]. These limitations 
prevent full understanding of how the neuromusculoskeletal 
system regulates impedance over the entire upper limb 
workspace under healthy and impaired conditions. Addressing 
this knowledge gap would inform new interventions and 
devices to help regulate impedance and restore limb stability 
in people with shoulder disability.  

Computational approaches and simulations with more 
realistic musculoskeletal models can complement and 
overcome the limitations of previous studies to more fully 
characterize the impedance properties of the upper limb. Thus, 
the overall objective of the proposed project was to develop a 
computational approach using an upper limb 
neuromusculoskeletal model with realistic geometry to 
estimate upper limb impedance parameters and validate the 
computational impedance results against published 
experimental results. 

II. METHODS 

A. Modelling the musculoskeletal-manipulandum system  

Our strategy in this preliminary study was to replicate a 
typical experiment set-up [6]. We added a planar two-joint 
manipulandum to an existing upper limb musculoskeletal 
model [10] implemented in OpenSim (version 3.3) [11]. The 
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upper extremity model had 7 degrees of freedom, with three 
describing the shoulder kinematics and four describing the 
elbow and wrist kinematics. The model geometry is defined 
based on a 50th percentile male population's anthropometric 
data and contains fifty Hill-type muscle-tendon units crossing 
shoulder, elbow, and wrist joints. The manipulandum 
consisted of two rigid cylindrical links and massless torque 
actuators. The links have lengths of 0.30 and 0.25 𝑚 and 
moments of inertia of 0.0037 and 0.0013 𝐾𝑔. 𝑚2, respectively. 
The inertia of the manipulandum (i.e., mass matrix) was 
designed to be smaller than the upper limb to minimize the 
effect of nonlinear dynamic forces on simulated movements. 
The torque actuators were placed at the manipulandum joints 
to apply torques about the z-axis in the global coordinate 
system (Fig. 1). The manipulandum included a handle (i.e., 
end-effector) whose centroid point along the z-axis was 
aligned with the shoulder along the z-axis.  

We used contact modeling to attach the handle to the 
model's hand using OpenSim's elastic foundation algorithm. 
To resemble the fingers’ grip around the handle, the meshed 
geometry of the handle was placed inside three meshed disk 
geometries. Contact parameters of stiffness and dissipation 
were set, respectively, to 25x106 (N/m) and 0.4 Ns/m.  Other 
coefficients of static, dynamic, and viscous friction were also 
defined based on Savescu’s work [12].  

A linear PD controller placed the handle in any desired 
position across the limb's reachable workspace and applied 
external perturbations to the hand (Fig. 1(A)). We used the 
following control law to determine the torque vector required 
to navigate the handle position: 

𝜏 = 𝐽(𝑞)𝑇[𝐾𝑚(𝑋𝑑 − 𝑋) − 𝐵𝑚�̇�] (1) 

where 𝜏 is the torque vector; 𝐽(𝑞) is the Jacobian matrix 
defining the handle cartesian displacement from the 
manipulandum joint angles 𝑞; 𝐾𝑚 and 𝐵𝑚 represent the 
manipulandum stiffness and viscosity matrices, respectively;  

𝑋𝑑 is the desired position; 𝑋 and �̇� show the current position 
and velocity vectors of the handle. In this study, we fine-tuned 
the stiffness and viscosity matrices as: 

𝐾𝑚 = [
400𝑔 0

0 400𝑔
] (𝑁/𝑚),  𝐵𝑚 = [

150𝑔 0
0 150𝑔

] (𝑁𝑠/𝑚) 

where 𝑔 is the gravitational constant. 

B. Forward dynamics 

Though the upper limb was supported against gravity 

during experiments, participants may have had to actively 

hold their upper limb in the desired static posture while 

holding the manipulandum’s handle. Thus, we used computed 

muscle control (CMC) to compute the steady-state muscle 

excitations required to hold the upper limb in a static posture 

at each of the handle’s starting points. During CMC, the 

gravity field was set to zero. We assumed that changes in 

muscle excitations caused by the small hand perturbations 

during the experiment were negligible; thus, the steady-state 

muscle excitations were applied to the respective muscles at 

corresponding handle starting points throughout forward 

dynamics simulations.  

At the start of each forward dynamics simulation, the 

manipulandum’s handle (with hand attached) was moved to 

the starting point using the feedback control law (Eq. 1). 

Given the model’s limited workspace in which muscle-tendon 

moment arms were previously validated [10], we chose 

starting points that were lateral to the shoulder joint. Eight 

equally spaced starting points (5 cm apart) were 33 cm 

anterior to the shoulder joint and from 3 to 48 cm along the x-

axis (medial/lateral direction). Another eight equally spaced 

starting points were 23 cm lateral to the shoulder and from 13 

to 48 cm along the y-axis (anterior/posterior).  

Once at the starting point, the manipulandum perturbed the 

hand in eight different directions. To ensure that the model's 

hand and manipulandum handle were at rest, perturbations 

were applied first at 3 s after reaching the starting point then 

every 0.6 s thereafter. During perturbations, the wrist joint 

 
Figure 1. Musculoskeletal-manipulandum model. A) The arrows show the 

eight directions of perturbations applied to the hand. B) The meshed 
geometry of the handle was surrounded with three meshed disc geometries 

to represent the hand grip. The humerus trochlea was constrained to move 

on the horizontal plane. 
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Figure 2. Sample handle displacements in x (A) and y directions (B) with 

corresponding restoring forces in x (C) and y directions (D) for a perturbation 

in y-axis. 
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movement was limited by a rotational bushing force to mimic 

typical bracing used in experiments. Since participants’ upper 

limbs were supported against gravity during experiments, the 

movement of the distal point of the humerus was constrained 

to only move in the horizontal plane at shoulder level (Fig. 

1(B)) and the gravitational acceleration was set to zero. We set 

the perturbation amplitude and duration to 2 mm and 1.2 s, 

respectively. Handle displacements and restoring forces (i.e., 

contact forces) were recorded during simulations.   

C. Upper limb endpoint stiffness estimation 

To estimate the hand impedance parameters, we regressed 

a second-order linear model (Eq. 2) to the simulated force field 

similar to the earlier studies [5, 6]. 

𝑴𝑑�̈�(𝑡) + 𝑩𝑑�̇�(𝑡) + 𝑲𝑑𝑋(𝑡) = −𝑑𝐹(𝑡)  (2) 

where 𝑴, 𝑩, and 𝑲 are inertial, viscosity, and stiffness 

matrices of the hand impedance, respectively; 𝑑�̈�(𝑡), 𝑑�̇�(𝑡), 
and 𝑑𝑋(𝑡) display, in order, the change in vectors of 
acceleration, velocity, and displacement of the handle, and 
𝑑𝐹(𝑡) is the change in restoring forces from perturbation 
onset. Handle acceleration and velocity were computed by 
taking second- and first-order derivatives from displacements. 
We wrote the impedance matrices of  𝑴, 𝑩, and 𝑲 as the sum 
of a symmetric and an antisymmetric matrix. The symmetric 
and antisymmetric components define, respectively, the 

conservative and non-conservative parts of the hand force field 
(i.e., the relation of hand restoring forces to displacements). 
We visualized the conservative force field with graphical 
ellipses whose size, principal semi-axes (i.e., shape), and 
orientation are defined based on the determinant, eigenvalues, 
and eigenvectors of the symmetric impedance matrices, 
respectively. Each ellipse depicts the locus of restoring forces 
for hand perturbations in every direction by order of one unit 
(e.g., 1 m displacement for the stiffness). Thus, ellipses with a 
larger area (i.e., size) represent higher restoring forces at limb 
posture, and the ellipse's major and minor axes determine the 
values and directions of the highest and lowest restoring 
forces, respectively.  

III. RESULTS AND DISCUSSION 

Fig. 2 shows the typical handle displacements and 
restoring forces for perturbations along the y-axis from one 
starting point. Figs. 3 and 4 represent the ellipses of the 
estimated hand stiffness, viscosity, and inertia for starting 
points along the medial/lateral and anterior/posterior 
directions, respectively.  At more medial and posterior starting 
points, the stiffness ellipses had lower eccentricity (Fig. 3(A), 
4(A)) and the major axis orientation (i.e., high stiffness 
direction) changed towards the shoulder joint. For more 
extreme hand positions, the stiffness ellipses were mainly 
elongated in the major axis direction, but for medial/posterior 

  
Figure 3. Estimated Stiffness (A), Viscosity (B), and Inertia ellipses (C) when hand displaced in the medial/lateral direction.  
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Figure 4. Estimated stiffness (A), Viscosity (B), and Inertia ellipses (C) for lateral hand positions when moved in the anterior/posterior direction. 
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positions, the stiffness ellipses became wider. This confirmed 
that hand restoring forces were higher and more isotropic for 
postures that are more central and proximal to the shoulder 
joint, consistent with results from Tsuji [6] and  Mussa-Ivaldi 
[1]. However, the overall size of our stiffness ellipses is larger 
than the values reported in [6] but smaller than the ones 
reported in [1]. The observed spatial pattern for stiffness 
ellipses is most likely due to increasing passive forces of 
biarticular muscles (e.g., triceps long head) and higher muscles 
activation at higher elbow flexion and shoulder horizontal 
adduction angles.  

The spatial pattern of the viscosity ellipses was similar to 
that of the stiffness ellipses, consistent with experimental 
results [6], [7]. The major axis of viscosity was aligned more 
towards the shoulder joint (Fig. 3(B), 4(B)), reflecting that the 
largest restoring forces against the speed occurred in the radial 
direction of the shoulder joint. The eccentricity of viscosity 
ellipses decreased toward more medial and posterior starting 
points, consistent with experiments [6]. The size of our 
viscosity ellipses, however, was substantially larger compared 
to experimental results. We suspect that viscosity is likely 
most influenced by muscles force-velocity relationships, 
muscles damping ratios, and hand-handle interaction.  

The shape and orientation of the estimated inertia ellipses 
were well-matched with the experimental results. It is 
expected that the major axis of inertia ellipses will be nearly 
parallel with the distal segment of the limb (i.e., 
forearm/hand). This spatial pattern can be seen in Fig. 3(C) and 
4(C) where the inertia ellipses rotated with the forearm/hand 
segment. To assess whether the estimated inertia ellipses were 
reasonable, we compared them to inertia ellipses computed for 
a two-joint arm whose links were cylindrical and have the 
same lengths and masses as the model’s upper arm and 
forearm/hand. Compared to the calculated inertia ellipses, the 
estimated ones had similar orientations and shapes but smaller 
eccentricity and size (Fig. 5). From these observations, we can 
infer that our modeling approach under-estimated the restoring 
forces against the acceleration.  

CMC does result in co-contraction of agonist-antagonist 
muscle pairs, but only to the minimum extent required to 
perform a simulated movement. Humans may vary the amount 
of co-contraction depending on other task goals (e.g., postural 
stability). Thus, future studies should explore the effect of co-
contraction level on upper limb impedance.   

I. FUTURE WORK & CONCLUSION 

Our preliminary results suggest that computational 
modeling and simulation can estimate upper limb impedance 
properties to complement and overcome the limitations of 
previous experimental and computational studies. Our 
simulation-based results were fairly consistent with 
experimental results as: 1) the orientation of the stiffness and 
viscosity ellipses were toward the center of glenohumeral 
joint; 2) the eccentricity of the stiffness and viscosity ellipses 
increased toward anterior and lateral extreme hand positions; 
3) the inertia ellipses were nearly parallel to the forearm/hand 
segment. There were, however, differences in the sizes of the 
inertia and viscosity ellipses between our model and previous 
experiments. These differences may be due to differences in 
muscle co-contractions and stretch reflexes between humans 
and the model, oversimplification of muscles and ligaments in 
the model, and missing passive human body components such 
as skin, veins, and cartilage. In future studies we will (1) refine 
the computational approach to predict experimental data more 
accurately and (2) identify how anatomical and biomechanical 
features influence upper limb impedance. 
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Figure 5. Estimated inertia from simulation vs. computed inertia from a 
simplified arm model with similar masses and lengths to that of the model’s 

arm. 
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