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Abstract— The body sway during standing displays fractal
properties that can possibly describe motion complexity. This
study aimed to use the Higuchi’s fractal dimension (HFD) and
Tortuosity on lower back accelerations recorded on younger
(< 35 y) and older adults (> 64 y). One wearable sensor
was secured on participants lower back (i.e., fifth lumbar
vertebra), which were asked to perform three different postural
tasks while standing barefoot as still as possible with and
without performing a visual oddball task. Results of HFD and
Tortuosity, applied to global anterior-posterior and medial-
lateral accelerations of the body, were not dependent from
signal amplitude, nor from any parametrization and allowed
distinguishing between different postural tasks (p < 0.001).
The proposed fractal analysis is promising to describe the
complexity of postural control in both younger and older adults,
paving the way to a wider use in pathological populations.

I. INTRODUCTION

Walking and balance impairment associated either with
ageing or neuro-musculoskeletal disorders are important
markers of disability, loss of independence and depletion
of individuals’ quality of life [1]. Quality of walking and
balance performances are generally evaluated by describing
different motor skills: i.e., complexity, adaptability, smooth-
ness, efficiency, symmetry and stability [2].

Although being a powerful tool to quantify motor impair-
ment, conventional motion analysis is still limited to clinical
environments and, thus, may not capture the relevant motor
skills needed in everyday life [2], especially in pathological
conditions. As an example, freezing of gait is associated with
high risk of falls in people with Parkinson’s disease and it
does not necessarily occur during neurological examination
[3]. Wearable technologies can possibly overcome such lim-
itations and interest in their use is rising due also to their
limited cost [2], [3]. Waist-mounted Inertial Measurement
Units (IMUs), generally mounted between the third and
fifth lumbar vertebrae and composed by accelerometers,
gyroscopes and magnetometers, are often used to quantify
the body Center of Mass (CoM) motion [4]. In particular,
accelerometers are used to derive a set of measures that
can serve as global indicators of walking [2] and balance
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performances [4]. A large variety of indicators obtained
from lower back acceleration profiles have been proposed,
but there is no clear agreement on the association of those
measures with specific motor skills [2].

The body sway during standing is a non-stationary pro-
cess that display fractal properties [5]. A signal has fractal
properties when pieces of it can be found elsewhere in the
signal at different time scales and have a relationship of
similarity. Fractal analysis (FA) has advantage of not being
restricted to study steady-state signals, but has the potential
of characterising transients [6]. FA was used in the past to
study the stride-to-stride variability and trunk acceleration
profiles in both normal and pathological gait [7], [8]. A signal
with fractal properties is a complex signal: in particular, the
higher the fractal dimension (FD) the higher the complexity.

Many algorithms have been proposed to calculate fractal
properties of signals, but some of them: call for (i) high com-
putational cost [9], (ii) long-lasting data collections [5], (iii)
high sampling frequency [10]; or (iv) have no clear definition
[4]. As an example, the Detrended Fluctuation Analysis
(DFA) was implemented to study the fractal properties of gait
stride-interval in people with Huntignton’s disease compared
with younger and older adults [7]. DFA detected a more
disordered signal in walking of people with Huntington’s
disease. However, results obtained via the DFA are difficult
to interpret due to the lack of standardization in the algorithm
definition itself [4].

Although the use of indices evaluating the fractal prop-
erties of lower back accelerations may pave the way to a
new understanding of postural control in static and dynamic
conditions, both in pathological and healthy individuals, at
both transient and ’steady-state’, the aforementioned draw-
backs have hampered their implementation in research and
clinical practice.
Among the available approaches, the Higuchi’s Fractal Di-
mension (HFD) is frequently adopted to describe fractal
properties in the non-linear analysis of electroencephalo-
gram. HFD is clearly defined [11], has a low computational
cost, does not call for any storage memory and, thus,
overcomes the limitations that affect other approaches [6],
[12], [9].

The aim of this study was (A) to perform a fractal
analysis of lower back acceleration signals gathered from
both younger and older adults using the HFD, and (B)
to compare the measures obtained with this approach with
a more common measure of signal complexity in motion
analysis.
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II. MATHEMATICAL BACKGROUND
A. Higuchi’s Fractal Dimension and Tortuosity

FD is a time domain analysis that provides a quantitative
measure of signal dynamics [13]. In the last decades, many
algorithms have been proposed to estimate FD. The most
widely accepted are Higuchi’s, Katz’s and Petrosian’s meth-
ods [11], [14], [15]. HFD is considered the most accurate
[16].

In brief, the Higuchi’s FD calls for: (i) the definition of
a set of k sub-signals s of length N , defined sampling the
original time series at regular time interval k and starting
from the sample m, with m = 1, ..., k; (ii) the calculus of
the absolute distance between subsequent samples of each s-
signal (i.e., samples at distance k in the original time series);
(iii) the normalization of these absolute distances for a term
that accounts for sub-signals length; (iv) the construction of
the length curve

Lm(k) =
1

k

[ q∑
i=1

∣∣s(m+ i · k)− s(m+ (i− 1) · k)
∣∣] · N − 1

q · k
,

(1)
with q = integer[(N −m)/k]; and (v) the calculus of the

average distance L(k) for m = 1, ..., k and k = 1, ..., kmax.
The curve L(k) is fractal with dimension D if L(k) ∝ k−D.
Using a log-log plot, D can be estimated via a least square
of the linear part of the `k curve:

`k :=
{
log(k), log

(
L(k)

)}
, k = 1, ..., klin, klin < kmax.

(2)
The so calculated fractal dimension D will be hereinafter

addressed with H`k .
The non-linear part of the `k curve presents oscillatory

behaviours (i.e., for k ∈ (klin, kmax]), whose characteristics
depend on the periodicity of the original signal [12]. The
tortuosity (τ`k ) is a measure of the changes in the first (∆(·))
and second partial differences (∆2(·)) of `k and, thus, is a
measure of signal periodicity [17]:

τ`k =

kmax∑
n=3

∣∣∣∣∣∆x(n)∆2y(n)−∆2x(n)∆y(n)[
(∆x(n))2 + (∆y(n))2

] 3
2

∣∣∣∣∣, (3)

with x = log(k) and y = log(L(k)). The higher the tortu-
osity, the more the signal is reach of oscillatory components.
For this study, klin and kmax were defined by inspecting the
first derivative of the constructed `k and were set at 6 (i.e,
first change of value of the first derivative) and 100 (i.e,
including `k ripples), respectively.

B. Sample Entropy

The sample entropy (SampEn) examines time series of
length N for similar epochs [18]. In particular, the SampEn
is the negative natural logarithm of the conditional probabil-
ity that two sequences that are similar for m points remain
similar at the next point with a tolerance r, having excluded
self-matches. The lower the SampEn, the higher the self-
similarity and, thus, the lower the complexity.

III. MATERIALS AND METHODS

Data used in this research were collected as part of a
larger project, which includes electroencephalography, elec-
tromyography and motion data. The detailed protocol used
for data collection and processing is described elsewhere
[19], whereas only relevant details are briefly reported here.

A. Participants and Ethics statement

Nine healthy older (ELD, 64-76 y) and 8 healthy younger
adults (CTRL, 24-34 y) were recruited [19]. All subjects
signed an informed consent prior data collection (ethical
approval granted by the Ethics Committee for Clinical Trials
of the Province of Padova, n.AOP2025).

B. Data collection

One IMU (Cometa WaveTrack Waterproof, Cometa srl,
Italy) was secured on participants fifth lumbar vertebra
(L5) with a double-sided adhesive tape (sampling frequency
142.85 Hz). See also Fig. 1a. Participants were asked to
perform three different postural tasks while standing barefoot
as still as possible for 3 minutes, keeping their feet at
shoulder width, and staring at a screen at 1 m distance and
at their eye-level.

Postural tasks were: 1) static and single-task (sST) – i.e.,
participants were standing on the floor and the screen was
switched off; 2) static and dual-task (sDT) – i.e., participants
were standing on the floor while performing a visual oddball
task; and 3) dynamic and dual-task (dDT) – i.e., participants
were standing on a 1 degree of freedom balance board that
was free to rotate around a medio-lateral axis (i.e., pitch
angle) while performing the visual oddball task (Fig. 1b).
Tasks were presented in random order to the participants.

The visual oddball task consisted in the presentation of
a sequence of repetitive (∼ 80/100) stimuli (i.e., a 3 cm2

red square in the center of the black screen) that were
infrequently (∼ 20/100) interrupted by a deviant stimulus
(i.e., a 3 cm2 yellow square in the center of the black screen).
Participants were asked to count the deviant stimuli only.

L5

CoM
AP

VT

ML

sST sDT dDTb)a)

1 m 1 m 1 m

Fig. 1. Data collection protocol: a) participant equipped with the IMU
on L5 and the antero-posterior, medio-lateral and vertical directions of
movement (AP, ML and VT respectively); b) the three postural tasks (static
and single task – sST; static with dual task – DT; and dynamic with dual
task – dDT).
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C. Data processing

A time-window of 40 s (i.e., the minimum duration for
transient extinction of stability parameters [20]) of the L5-
acceleration was considered for the analysis for each task and
was low-pass filtered with a zero-lag 2nd-order Butterworth
filter (cut-off 15 Hz) [19]. A roll-pitch correction was then
estimated from the sST condition and applied to all trials
(sST, sDT, dDT) to correct for possible misalignment of
the sensor axes with the global anterior-posterior (AP) and
medial-lateral (ML) directions of the body [21]. Acceleration
signals were then reoriented on the AP (pointing forward),
ML (right-to-left) and vertical (VT parallel to −g, the
negative gravity acceleration vector) directions (see Fig. 1a).
Considering that VT signals are most likely to be considered
as noise in sST and sDT conditions, VT component was
retained for further analysis for the dDT condition only.

Data were processed in MATLAB (r2020a, Mathworks
Inc., Natick, USA). H`k and τ`k were calculated using the
codes published along with [9], whereas the SampEn was
calculated with [22], [18].

D. Statistics

All variables were tested via a two-tailed Wilcoxon rank
test to check for significant differences between ELD and
CTRL groups (α = 0.05). Differences across balance con-
ditions were also tested via a Kruskal-Wallis test (α =
0.05), with a Wilcoxon rank test as post-hoc. A Bonferroni
correction was applied to account for multiple comparison.
Acceleration signals display different magnitude among con-
ditions as assessed via Root Mean Square (RMS). Thus, the
linear regression was calculated for H`k , τ`k and SampEn
against the RMS to test for possible dependence of those
indices from signal amplitude (R2 > 0.70 and p < 0.05
indicate a meaningful linear relationship). Statistical analyses
were performed in RStudio (v1.4.1106, RStudio, Boston,
USA).

IV. RESULTS

Fig. 2 and Fig. 3 respectively show the results obtained
for H`k and τ`k , and SampEn.
H`k and τ`k allow distinguishing between floor standing

and balance board postural test (dDT), see Fig. 2. Both H`k

and τ`k are lower in dDT for both CTRL and ELD (Kruskal-
Wallis p < 0.001). Post-hoc analyses revealed significant
differences in H`k and τ`k when comparing sST with dDT
and sDT with dDT, both in AP and ML directions in CTRL
(p < 0.001) and ELD (p < 0.0001).
SampEn is dependent from signal amplitude. Indeed, a

linear relationship with the signal RMS was found only for
the SampEn in AP and sST (CTRL: R2 = 0.80 and p <
0.01; ELD: R2 = 0.90 and p < 0.001), in ML and sST
(CTRL: R2 = 0.89 and p < 0.001; ELD: R2 = 0.77 and
p < 0.01) and dDT (CTRL: R2 = 0.80 and p < 0.01). For
both H`k and τ`k a weak relationship was found in AP for
the dDT condition only in the CTRL group (R2 < 0.70 and
p < 0.05). Moreover, SampEn is not able to distinguish
between different postural tasks (i.e., it is not sensitive to
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Fig. 2. Higuchi’s fractal dimension H`k (a) and tortuosity τ`k (b)
calculated for younger (CTRL) and older (ELD) adults (in green and red,
respectively) for static single-task (sST), static dual-task (sDT) and dynamic
dual-task (dDT) conditions in the three directions (antero-posterior – AP,
medio-lateral – ML, and vertical directions – VT). CTRL vs ELD p-values
are reported on each sub-panel for significant comparisons.
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Fig. 3. SampEn for younger (CTRL) and older (ELD) adults (in green and
red, respectively) for the static single-task (sST), static dual-task (sDT) and
dynamic dual-task (dDT) conditions in the three directions (antero-posterior
– AP, medio-lateral – ML, and vertical directions – VT).
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different conditions of movement), see Fig. 3 (Kruskal-Wallis
p > 0.05).

V. DISCUSSION
Considering that 1) SampEn is dependent from signal

amplitude and 2) it requires to be evaluated on multiple
scales (i.e., multiscale approach) being sensible to algorithm
parameters [23], H`k and τ`k are more reliable nonlinear
approaches to evaluate complexity of acceleration profiles in
balance tasks.

Complexity is lower in dDT for both CTRL and ELD (see
Fig. 2), most likely because the balance board constrained
the movement to be oscillatory around one axes only. Thus,
even though it is a more unstable condition, dDT introduces
a periodicity in the postural adjustments that consequently
increases the signal regularity (i.e., reduces the complexity).
Despite non-evident differences are obtained comparing
CTRL vs ELD in all conditions and for all acceleration
components (AP, ML and VT), a trend of lower H`k and
τ`k in the ELD group is visible. This may be associated
with a gross and periodical balance adjustment due to a
reduced ability of older adults of continuously adjusting their
balance with respect to younger adults. This conclusion is
also supported by results previously obtained on the same
data set and published in [19], which highlighted a larger
body sway in older adults, than in younger adults.

It is worth considering that these conclusions should be
further explored on a larger sample of younger and older
individuals, also considering analyses aiming to test the reli-
ability of the Higuchi’s FD and Tortuosity applied on lower
back accelerations gathered from different balance tasks.
Indeed, further analyses may either confirm our interpretation
of the results, or reveal that sST and sDT tasks may be more
reliable when studying body balance with the Higuchi’s FD
and Tortuosity.

VI. CONCLUSIONS
The results of present study encourage the use of the

Higuchi’s fractal dimension to describe the complexity of
postural control in both younger and older adults, paving the
way to a wider use even in pathological populations, e.g., in
people with Parkinson’s disease.
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