
 

 

 

 

Abstract — Continuous blood pressure (BP) monitoring is 

important for the prevention and early diagnosis of 

cardiovascular diseases. Cuffless BP estimation using pulse 

arrival time (PAT) via a mathematical model which enables 

continuous BP measurement has recently become a popular 

research topic. In this study, simultaneous biomedical signals 

from ten healthy subjects were acquired by electrocardiogram 

(ECG) and photoplethysmogram (PPG) sensors and the 

continuous reference BP data were collected by a cuff-based 

Finometer PRO BP monitor. A hierarchical model was applied 

to estimate the parameters of a nonlinear model which in turn is 

used to estimate systolic blood pressure (SBP) using PAT with 

few calibration measurements. The mean absolute difference 

(MAD) between the estimated SBP and reference SBP is 

4.35±1.43 mmHg using the proposed hierarchical model with 

three calibration measurements and is 4.36±1.17 mmHg with a 

single calibration measurement. 

Index Terms—Cuffless blood pressure estimation, pulse 

arrival time, hierarchical models 

I. INTRODUCTION 

Blood pressure (BP) is the pressure exerted by blood on the 

artery walls as the blood circulates through the body. It is 

considered as one of the most important physiological 

parameters in the evaluation of human health. Uncontrolled 

high blood pressure increases the risk of serious health 

problems, including heart attack and stroke [1].   

A number of continuous cuffless BP measurement methods 

have been developed over the last decade and most of them 

have employed PAT and PTT (pulse transit time) which can 

be approximated by the time differences between ECG R 

peaks and different landmarks of PPG waveforms. Several BP 

estimation models were introduced and their performances for 

BP estimation using PAT which is the time difference 

between ECG R peak and the point with maximum gradient 

on the rising edge of the PPG were compared in [2]. This 

research indicated that nonlinear models are better than a 
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linear one in continuous BP estimation. In our previous work 

[3], a new time interval which is the time difference between 

ECG R peak and ballistocardiogram (BCG) J peak was 

employed for SBP estimation with an exponential model, and 

the SBP estimation based on this new time interval was more 

accurate than the SBP estimation obtained using PAT. 

However, most of the related studies employed the least 

squares method to optimize the model parameters which 

makes it difficult to estimate BP for a group of subjects with 

a generalized model. Also, it performs poorly on a small 

dataset and does not provide uncertainties of estimations. 

In hierarchical (multilevel) Bayesian regression modelling, 

the regression coefficients are themselves given a model, 

whose parameters are also estimated from data. Compared 

with classical regression, hierarchical modeling is almost 

always an improvement, as shown for example in the 

prediction of home radon levels in U.S. counties [4]. In this 

study, the SBP which is a more frequent cardiovascular risk 

factor than diastolic blood pressure (DBP) [5] will be 

estimated using a one-level hierarchical model by optimizing 

the parameters of the nonlinear relationship between PAT and 

SBP at both individual level (each subject) and group level 

(between subjects). The feasibility of estimating SBP with 

few calibrations (three calibration points and one calibration 

point) using a hierarchical model was verified. 

This paper is organized as follows. Section 2 describes the 

study population, experimental protocol, instrumentation, and 

signal pre-processing approaches. In Section 3, a nonlinear 

model which was used to express the relationship between BP 

and PAT is introduced, and the methodologies of model 

parameter optimization using a hierarchical model are 

described. Section 4 shows the performance of SBP 

estimation using a hierarchical model in comparison against 

the ordinary least squares (OLS) method. Finally, conclusions 

and future work are presented in Section 5. 
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II. MATERIALS & METHODS 

2.1 Study population and experimental protocol 

The aim of this work is to estimate SBP using PAT via a 

hierarchical model. Ten healthy subjects (5 males and 5 

females, 28.3±8.3 years’ old) without known cardiovascular 

diseases or hypertension participated in the study. For each 

participant, ECG, PPG and continuous reference BP were 

recorded simultaneously for 10 minutes. The performance of 

cuffless BP measurement was evaluated with the subjects at 

rest and while performing the Valsalva maneuver (VM), 

which is known to induce dynamic BP changes, at pre-defined 

time points. Specifically, participants were required to 

perform one VM every 2 minutes for a total of 5 to 6 VMs 

performed during 10 minutes’ data collection. The 

experimental protocol was approved by the University of 

Ottawa Research Ethics Board. 

2.2 Signal acquisition system 

The ECG signal was collected from both left and right 

index fingers using a pair of Lead I ECG dry electrodes. An 

optical PPG sensor was placed on the left wrist above the 

ulnar artery. The reference beat-to-beat BP was collected by 

a continuous Finometer PRO BP monitor (Finapres Medical 

System BV, The Netherlands) using a cuff placed on the 

middle finger. The ECG and PPG signals were digitized at 

2000 Hz using a DAQ card (National Instrument USB 6002, 

16 bits). A LabVIEW program (LabVIEW 2016, National 

Instruments) displayed the digital biomedical signals in real 

time and saved them for subsequent analysis. The signals 

were processed and the BP estimation model was developed 

in Python (3.8.3) with two main libraries PyMC3 (3.8) and 

ArviZ (0.6.1) for probabilistic programming. 

  

Figure 1. Morphological definition of PAT 

2.3 Signal pre-processing and PAT extraction 

Since the ECG and PPG signals were collected using one 

personal computer and beat-to-beat reference BP waveforms 

were collected using Finometer, all these three waveforms 

were synchronized by checking timestamps and extracting 

intersections from the dataset before further processing. A 60 

Hz notch filter was applied to remove power-line noise. A 

third-order Butterworth bandpass filter with passband of 0.5-

25 Hz was applied on ECG and 0.5-7 Hz on PPG signal. 

In this study, the beat-to-beat PAT is extracted by 

calculating the time difference between ECG R peaks and 

PPG systolic peaks for every cardiac cycle as shown in Figure 

1. PAT outliers were removed (Z-score>3 or Z-score<-3) 

along with corresponding SBP values. Similarly, SBP outliers 

were removed along with corresponding PAT values, and a 

median filter was applied to smooth the simultaneous PAT 

and SBP data.  

III. CUFFLESS BLOOD PRESSURE ESTIMATION 

3.1 Cuffless BP estimation model 

PTT is related to pulse wave velocity (PWV) which is 

further related to BP. The theoretical relation is expressed by 

Moens-Korteweg equation [6] which models the relationship 

between PWV and the incremental elastic modulus of the 

arterial wall or its distensibility.  

𝑃𝑊𝑉 =
𝐿

𝑃𝑇𝑇
= √

𝐸∙ℎ

2𝑟𝜌
                                          (1) 

where L is the pulse transit distance, PTT is the pulse transit 

time, 𝜌 is the blood density, r is the inner radius of the vessel, 

h is the vessel wall thickness, and E is the elastic modulus of 

the vascular wall. There exists an empirical exponential 

relation between elastic modulus E and BP [7]. 

𝐸 = 𝐸0 ∙ exp(𝜅 ∙ (𝐵𝑃 − 𝐵𝑃0))                           (2) 

where 𝜅 is a constant, 𝐸0  and 𝐵𝑃0  are nominal values of 

the Young’s modulus and blood pressure, respectively. A 

logarithmic dependency between BP and PTT can be 

extracted from (1) and (2) by assuming all other parameters 

are constant. Thus, the relationship between PTT and BP can 

be expressed by: 

𝐵𝑃 = 𝛼 + 𝛽 ∙ ln(𝑃𝑇𝑇)                                (3) 

The coefficients 𝛼  and 𝛽  are optimized based on the 

acquired simultaneous BP and PTT. In this study, we 

approximated the PTT with PAT and therefore the SBP values 

can be estimated by applying the extracted coefficients in  

𝑆𝐵𝑃𝑒𝑠𝑡 = 𝛼 + 𝛽 ∙ ln⁡(𝑃𝐴𝑇) for new PAT measurements. 

3.2 Cuffless BP estimation using classical estimates 

The regression between the PAT and SBP can be extracted 

by considering all PAT and SBP measurements from all 

subjects as a whole (complete pooling), or it can be optimized 

for different individuals (no pooling) which is commonly 

employed for cuffless BP estimations. However, both 

methods have drawbacks. At one extreme, the complete 

pooling method neglects the individual differences such as 

arterial stiffness and blood density and gives identical 

estimates for all subjects. At the other extreme, the no-pooling 

model can cause overfitting on a small dataset. Therefore, the 

hierarchical model which is a middle ground to both of these 

extremes is more reasonable for this application. 

3.3 Cuffless BP estimation using a hierarchical model 

There are several ways to optimize the parameters for the 

proposed nonlinear model (3). One commonly used method is 

known as least squares fitting which returns the values of 𝛼 

and 𝛽 yielding the lowest average quadratic error between the 

observed BP and the predicted BP. An alternative to 

optimization is to generate a probabilistic model which can 

obtain the best values of 𝛼 and 𝛽 together with an estimation 
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of the uncertainty about the parameter’s values [8].  

In this study, the nonlinear model (3) can be 

probabilistically expressed as follows: 

𝑆𝐵𝑃~𝒩(𝜇 = 𝛼 + 𝛽 ∙ ln(𝑃𝐴𝑇), 𝜖)                         (4) 

That is, the data vector SBP is assumed to be distributed as 

a normal distribution with a mean of 𝛼 + 𝛽 ∙ ln(𝑃𝐴𝑇), and a 

standard deviation of the measurement noise 𝜖.  

The probabilistic model and the OLS method should have 

similar performance in optimizing model parameters on a 

large dataset. However, the parameters 𝛼  and 𝛽  are 

unbounded when the dataset is extremely small, for example, 

only one data point. This can be solved by selecting strong 

priors for the unknown parameters 𝛼 and 𝛽. Another way to 

convey information is by defining hierarchical models, since 

hierarchical models allow information to be shared between 

subjects, shrinking the plausible values of the estimated 

parameters [8]. 

In a hierarchical model, the parameters can be estimated 

directly from the data by placing shared priors over them, 

instead of fixing the parameters of our priors to some constant 

numbers. These higher-level priors are known as hyperpriors 

and their parameters are hyperparameters, and informative 

priors will be assigned based on the fact that the hyperpriors 

will be shared between subjects and their posteriors will 

shrink to the group mean. The 𝛼  and 𝛽  derived from each 

subject’s PAT and SBP values are −1 ± 30.85 and 

−116.35 ± 32.24⁡using OLS method. Thus, the graphical 

representation of the one-level hierarchical model for this 

study with the definition of the parameters and priors for each 

level is shown in Figure 2. 

 

Figure 2. The Kruschke diagrams of the proposed hierarchical model and 
the selection of the hyperpriors. 

As shown in Figure 2, the parameters 𝛼 and 𝛽 that mainly 

determine the distribution of BP have their priors in normal 

distributions. The hyperparameters 𝜇𝛼 and 𝜇𝛽  have their 

hyperpriors in normal distributions and the hyperparameters 

𝜎𝛼 and 𝜎𝛽 have their hyperpriors in half-normal distributions. 

The model parameters of interest are estimated using 

posterior distributions which are determined by analytical 

integration. The Markov chain Monte Carlo (MCMC) method 

was employed for parameter estimation and No U-turn 

Sampler (2000 samples for each channel with 1000 tuning 

samples) was used to evaluate the posterior distributions. 

IV. RESULTS 

In this study, we aim to evaluate the feasibility of the 

proposed hierarchical model in cuffless BP estimation via a 

nonlinear model, and a real-world application which is to 

estimate BP for a new subject with some calibration 

measurements of PAT and BP is demonstrated. For example, 

there is a PAT and BP database which is collected from a 

number of different subjects available for cuffless BP 

estimation. A new user collects ECG and PPG signals using a 

wearable device and measures the BP using a cuff-based 

device several times, and the averaged PAT values for each 

measurement and the corresponding BP values can be 

considered as calibration measurements. With the database 

and the new calibration measurements, the hierarchical model 

will be trained and the parameters for the nonlinear model (3) 

will be optimized and then the BP can be estimated with new 

PAT measurements for this user. 

4.1 Cuffless BP estimation with three calibrations 

In this study, a ten-fold cross validation was employed to 

evaluate the generalization of the hierarchical model in SBP 

estimation. For each fold, the collected data were split into a 

training set which includes nine subjects’ beat-to-beat PAT 

and SBP values (database) and three PAT and SBP 

measurements (new user’s calibration measurements) of one 

remaining testing subject to train the hierarchical model. The 

mean SBP (normal BP), maximum SBP (increased BP) and 

the minimum SBP (decreased BP) with their corresponding 

PAT values of the testing subject’s first fifty measurements 

were selected as three calibrations. SBP estimations of the 

testing subject are validated against a testing set which is the 

rest of that subject’s PAT and SBP measurements. Also, the 

OLS method was applied for testing subject’s calibration 

points as a comparison of SBP estimation accuracy. The 

optimized parameters 𝛼  and 𝛽 , mean absolute difference 

(MAD) between the estimated SBP and reference SBP for the 

testing subject obtained using both OLS method and 

hierarchical model are shown in Table I. The extracted 

regressions obtained by applying hierarchical model and OLS 

method on the subject 7’s calibration measurements with the 

true regression line of the testing set are shown in Figure 3 (a) 

as an example. 

4.2 Cuffless BP estimation with a single calibration 

In this section, we will assume an extreme condition that 

the new subject only conducts a single calibration. As before, 

a ten-fold cross validation was applied. For each fold, the 

training set includes nine subjects’ beat-to-beat PAT and SBP 

values (database) and the mean PAT and SBP values of the 

remaining one subject’s first fifty measurements (new user’s 

calibration measurement) to train the hierarchical model, and 

the testing set is the rest of that subject’s PAT and SBP 

measurements. The MAD between the estimated SBP and 

reference SBP for the testing subject obtained using 

hierarchical models are shown in Table II. The extracted 
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regression obtained by applying hierarchical model on the 

subject 7’s calibration measurement and the real regression 

line of the testing set are shown in Figure 4 (a) as an example. 

Table I. The optimized parameters 𝛼 and 𝛽, MAD between the estimated 

SBP and reference SBP using OLS method and hierarchical model with three 
calibration measurements. 

 

 

Figure 3. (a) Regression curves for one subject for the case when only 3 PAT-

SBP pairs are used as a training set (red dots). The remaining PAT-SBP pairs 
(testing set) are not used for calibration and are shown as blue dots. 

Regression curves include the green line obtained using only red points based 

on OLS (OLS method), red line obtained using only red points based on the 
hierarchical model (Hierarchical model) and black line obtained using blue 

points using OLS (True regression); (b) the estimated SBP trend (red) using 
the hierarchical model and the reference SBP trend (blue) of the testing set. 

V. CONCLUSION AND FUTURE WORK 

As shown in Table I, the SBP estimations using a 

hierarchical model are almost always better than using OLS 

method with three calibration measurements. It can be 

observed from Figure 3 (a) that the regression line extracted 

from three calibrations of subject 7 using the hierarchical 

model is almost parallel to the true regression line derived 

from testing set using the OLS method. As shown in Figure 3 

(b) and Figure 4 (b), the hierarchical model can also track the 

BP trend which is derived by averaging BP values using the 

moving average with the window length of 30 beats. As 

shown in Table II, the SBP estimations using a hierarchical 

model with only one calibration measurement are almost 

identical to the SBP estimation using three calibration 

measurements and the estimation performance is expected to 

be improved with more calibrations performed in different 

scenarios (rest, exercise, sleep etc.). Furthermore, the 

estimated regression using the hierarchical model with one 

calibration is parallel to the true regression extracted from the 

testing set, which means the hierarchical model can estimate 

BP accurately with few calibrations. Additional limitation in 

using hierarchical models is that it is necessary for the training 

of the model to have a subset of subjects for whose beat-to-

beat PAT-SBP measurements are obtained. 

In the future, we will include DBP and MBP for estimation 

and also quantify the prediction uncertainty. A larger dataset 

including more subjects and longer data collection durations 

will be employed, for example, the MIMIC-III clinical 

database [9].  

Table II. The MAD between the estimated SBP and reference SBP using a 
hierarchical model with one calibration measurement (unit: mmHg) 

 

 

Figure 4. (a) Regression curves for one subject for the case when only 1 PAT-

SBP pair is used as a training set (red dot). The remaining PAT-SBP pairs 

(testing set) are not used for calibration and are shown as blue dots. 
Regression curves include the red line obtained using only red point based on 

the hierarchical model (Hierarchical model) and black line obtained using 

blue points using OLS (True regression); (b) the estimated SBP trend (red) 
using the hierarchical model and the reference SBP trend (blue) of the testing 
set. 
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