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Abstract—Since the pandemic of COVID-19 began in January
2020, the world has witnessed drastic social-economic changes.
To harness the virus spread, several studies have been done
to study contributing factors that are pertinent to COVID-19
transmission risks. However, little has been done to investigate
how human activities on the spatial network are correlated
to the virus transmission and spread. This paper performs a
statistical analysis to examine interrelationships between spatial
network characteristics and cumulative cases of COVID-19
in US counties. Specifically, both county-level transportation
profiles (e.g., the total number of commute workers, route miles
of freight railroad) and road network characteristics of US
counties are considered. Then, the lasso regression model is
utilized to identify a sparse set of significant variables that are
sensitive to the response variable of COVID-19 cases. Finally,
the fixed-effect model is built to capture the relationship between
the selected set of predictors and the response variable. This
work helps identify and determine salient features from spatial
network characteristics and transportation profiles, thereby
improving the understanding of COVID-19 spread dynamics.
These significant variables can also be utilized to develop
simulation models for the prediction of real-time positions of
virus spread and the optimization of intervention strategies.

Index Terms—Infectious disease, spatial network, transporta-
tion profiles, US county, COVID-19, virus spread

I. INTRODUCTION

THe pandemic of COVID-19 poses great challenges
to our society. Because of high virus infectivity and

asymptomatic infection, it is often difficult to make quick
responses and thereby control the transmission of COVID-
19 in human populations. As of May 2, 2021, the US has
reported more than 32.39 million infected cases and 576k
deaths [1]. With rapid advances in epidemic surveillance
systems, abundant data of infection are collected. The avail-
ability of these data provides unprecedented opportunities
to investigate the relationships between different risk factors
(e.g., age, commute settings) and epidemic characteristics.

Several works have been done to study different con-
tributing factors that could affect the virus transmission and
spread process in spatial regions. For example, Yang et. al [2]
performed a statistical analysis to examine the relationship
between a variety of factors (e.g., social-economic factors,
healthy factors, demography factors) and COVID-19 infec-
tion. One significant variable from the study is the number
of households with grandparents and grandchildren. Through
an analysis of mobility data from 52 countries around the
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world, Nouvellet et al. [3] found that the reduction of human
mobility significantly slows down the virus spread process.
Pramanik et al. investigate the climatic influence on COVID-
19 transmission risks in 228 cities across three climatic
zones. They found that there are strong relationships between
the average diurnal temperature range and the COVID-19
outbreak in tropical regions. Khanijahani [4] studied county-
level disparities among ethnic and socioeconomic factors in
confirmed COVID-10 cases and mortality rates in the United
States. It is reported that the population of adults with less
than a high school diploma had a high infection and mortality
rate. However, very little has been done to investigate how
human interactions in the spatial network are related to the
extent of virus spreads in different US counties.

Indeed, human mobility patterns are primarily attributed
to the structure of the spatial network [5]. In a small-
scale spatial environment, individuals often follow the road
network to visit a set of locations (e.g., workplaces, shopping
malls, grocery stores). In a large spatial environment, people
tend to travel through a spatial network of airports, railroads,
and highways. As such, spatial network characteristics can
also be potentially related to the COVID-19 spread in the
spatial environment. Figure 1 illustrates the road network
of Centre County, PA. Note that nodes are more densely
scattered in the downtown area, which also consists of more
human traffic flows. Because human interactions are frequent
in this area, the virus tends to spread at a fast rate [6].

Fig. 1. The road network of Centre County, PA

In this paper, we perform a statistical analysis to investigate
contributing factors from spatial network characteristics to
COVID-19 transmission risks in US counties. First, relevant
data are collected and categorized into two groups: trans-
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portation profiles and road network characteristics. Then, we
utilize the lasso regression model to shrink the number of
predictors to a sparse set of predictors that are sensitive to
the response variable of cumulative cases. Finally, we build a
fixed-effect model to capture dynamics of COVID-19 spread
in different US counties.

II. DATA INTEGRATION

In this study, we used cumulative cases of COVID-19
at the county level as the dependent variable, which are
readily available from the New York Times data repository
(i.e., https://github.com/nytimes/covid-19-data). We then pro-
cessed infection data from July 15, 2020 to April 15, 2021 for
monthly cumulative cases of COVID-19. Figure 2(a) depicts
the distribution of cumulative cases of April 15, 2021 in US
counties. Note that the COVID-19 has almost spread to the
whole US and only a few counties are the exception.

For the independent variables, a total of 33 predictors at the
county level were extracted from the official website of the
Bureau of Transportation Statistics of the U.S. Department
of Transportation (i.e., https://www.bts.gov/ctp) and OSMnx
supported by the OpenStreetMap platform [7]. Figure 2(b-
c) provides the geographical distribution of some predictors
(e.g., total street length and the number of business estab-
lishments). These predictors are categorized into two groups,
namely transportation and road network as follows,
• Transportation predictors: We extracted 17 variables

about U.S. transport infrastructure from Bureau of Trans-
portation Statistics as follows: number of primary and
commercial airports (x1), number of non-commercial civil
public-use airports and seaplane base (x2), number of
non-commercial other aerodromes (x3), number of bridges
(x4), percent of poor condition bridges (x5), number of
business establishments (x6), percent of resident workers
who commute by transit (x7), number of resident workers
who work at home (x8), number of workers from other
counties who commute to work in the county (x9), number
of resident workers who commute to work in other counties
(x10), number of resident workers who commute within a
county (x11), number of resident workers (x12), number of
residents (x13), number of total docks (x14), route miles of
freight railroad (x15), percent of medium to fair condition
bridges (x16) and route miles of passenger railroad and rail
transit (x17).

• Road network predictors: In addition, road data were first
downloaded from the OpenStreetMap and used to construct
the spatial network of US counties. Then, 16 network
measures are calculated as dependent variables: number
of nodes(x18), number of edges (x19), average degree of
nodes (x20), number of intersections (x21), average streets
per node (x22), total edge length (x23), average edge length
(x24), total street length (x25), average street length (x26),
number of street segments (x27), node density in square
kilometers (x28), intersection density in square kilometers
(x29), edge density in square kilometers (x30), street density

in square kilometers (x31), average circuity (x32) and self-
loop proportion (x33).

III. STATISTICAL MODELING

Regression models present a functional relationship be-
tween a multivariate set of predictors and responses. How-
ever, there is often multicollinearity among predictors that
can cause the model to be sensitive and unstable to extraneous
noises [8], [9]. Hence, the lasso regression model is utilized
to perform the selection of significant variables from trans-
portation and road network predictors [10]. For a nonnegative
λ, it penalizes the sum of L1 norm of model parameters,
which can be expressed as follows,

argmin
β0,β

(
1

N
(

N∑
i=1

yi − β0 −Xiβ) + λ

P∑
j=1

|βj |) (1)

where N is the number of observations, yi is the cumulative
cases of i-th observation,Xi is a vector of predictor values of
i-th observation and P is the number of predictors. Note that
λ controls the magnitude of the penalty. When λ is getting
bigger, the model tends to penalize insignificant predictors,
and therefore only significant predictors will be retained.

Because the control policy of COVID-19 may vary due
to different state-level governments, the infection rate of
COVID-19 is correlated to the state to which the county
belongs. Hence, we consider the fixed-effect model to cap-
ture the relationship between the selected set of significant
predictors and the response variable of cumulative cases in
different US counties. Specifically, the fixed-effect model can
be described as follows,

yi|t = β0 +

P∑
j=1

βjxij +

K∑
k=1

γkuik + ε (2)

where yi is the total number of cumulative COVID-19 cases
of county i, β0 and βj are estimated coefficients, xij is the
value of j-th predictor of county i, γk is the fixed effect
for state k, uik is the indicator variable of whether county i
belongs to state k and ε ∼ N(0, σ2).

IV. EXPERIMENTAL RESULTS

Figure 3(a) shows the Pearson correlation between 33
predictors and confirmed COVID-19 cases in US counties
over 10 months. Overall, there are high correlations between
COVID-19 infections and transportation, road network pre-
dictors. Four predictors in county-level transportation profiles
correlate more than 0.9, namely the number of residents,
the number of resident workers, the number of resident
workers who commute within county, and the number of
business establishments. This demonstrates that the more
residents, resident workers, and commuting workers a county
has, the more infection it will have. This is not surprising
because the virus spreads at a rapid rate when humans make
frequent contacts with each other during commuting and at
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Fig. 2. The geographical distribution of (a) cumulative cases of 04/15/2021 (b) total street length (c) the number of business establishment for US counties
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Fig. 3. (a) Pearson correlation between 33 predictors and confirmed COVID-19 cases in US counties. Scatter plots of monthly cumulative cases vs. (b)
transformed number of business establishment (c) transformed total street length

Fig. 4. (a) The variations of prediction errors vs. regularization parameter in Lasso regression with cumulative cases and 33 predictors. (b) The coefficient
path for the Lasso regression

the workplace. Because business establishments are often
visited by a large number of residents every day, infections
are more likely to occur and thereby the virus will quickly
spread to the entire spatial area. This can also be observed
from the scatter plot in Figure 3(b). Network-based predictors
tend to have a slightly smaller correlation with the cumulative
cases at the county level. One of these predictors (i.e., total
street length) has reported a correlation of 0.712, which can
also be seen in the scatter plot of 3(c). When the total street
length is large, people living in the spatial area tend to be
more connected and concentrated. As such, individuals are
more vulnerable and likely to transmit the virus.

The lasso experiment is performed on the response vari-
able of cumulative cases and 33 predictors using 10-fold
cross-validations. Figure 4(a) shows the variations of mean
squared errors (MSE) at different choices of regularization
parameters. The green circle and dotted line refer to λ with
the minimum cross-validation error while the blue circle and
dotted lines locate λ with minimum cross-validation error
plus one standard deviation. Note that when the value of λ
decreases, the number of predictors that enters the model
also increases. Because MSE shows a trend of exponential
decay with the regularization parameter λ, we choose the
green dot as the optimal location of λ, which corresponds to
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Fig. 5. (a) The variations of adjusted R2 for the fixed-effect model with the response variable of cumulative cases (from July 2020 to April 2021). The
residual diagnosis of the fixed-effect model includes (b) the histogram of residuals (c) residuals in the order of observations

the selection of 13 predictors as a sparse set of sensitive
parameters to the response variable. The coefficient paths
of 33 predictors when λ is reduced from 1 to 0.0001 are
illustrated in Figure 4(b). One significant variable is the
average circuity x32 that enters the model very early and then
steadily negatively influence the response variable. Average
circuity x32 describes the ratio between the length of network
path and euclidean distance between two nodes (or locations)
in the road network. The smaller the value of x32 is, the
more efficient the road network. This indicates there is a
negative relationship between the COVID-19 infection and
the efficiency of the road network.

Figure 5(a) shows the variations of adjusted R2 for the
response variable of cumulative COVID-19 cases. When
additional infection data are collected and added to the
fixed-effect model, the adjusted R2 increases from 0.85
to 0.96. Figure 5(b) and (c) provides an example of the
residual diagnosis of the fixed effect model. The histogram
of residuals show that the normality assumption is valid and
there are no symmetric patterns in the residual plots.

V. CONCLUSIONS

The pandemic of COVID-19 not only impacts the health
of our society but also brings great disruptions to the
world. Research on the contributing factors to the COVID-19
transmission is critical to understand the spread dynamics.
Although many factors (e.g, mobility, social-economic, de-
mography factors) have been studied in previous studies, little
has been done to investigate the interrelationship between
spatial network characteristics and COVID-19 infections in
US counties. Note that human interactions and dynamic
movements are performed on the structure of spatial net-
works. This paper provides a statistical analysis to study
this relationship between the characteristics of transportation
networks and cumulative cases of COVID-19 in US counties.
Experimental results show that network factors (e.g., average
circuity, total street length of a spatial region) are highly
correlated to the virus transmission process. These significant
factors can be further fed into simulation models and/or
health policy design to control the virus spread process.
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