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Abstract—The use of network models to study the spread
of infectious diseases is gaining increasing interests. They
allow the flexibility to represent epidemic systems as networks
of components with complex and interconnected structures.
However, most of previous studies are based on networks of in-
dividuals as nodes and their social relationships (e.g., friendship,
workplace connections) as links during the virus spread process.
Notably, the transmission and spread of infectious viruses are
more pertinent to human dynamics (e.g., their movements
and interactions with others) in the spatial environment. This
paper presents a novel network-based simulation model of
human traffic and virus spread in community networks. We
represent spatial points of interests (POI) as nodes where human
subjects interact and perform activities, while edges connect
these POIs to form a community network. Specifically, we
derive the spatial network from the geographical information
systems (GIS) data to provide a detailed representation of
the underlying community network, on which human subjects
perform activities and form traffics that impact the process
of virus transmission and spread. The proposed framework is
evaluated and validated in a community of university campus.
Experimental results showed that the proposed simulation
model is capable of describing interactive human activities at
an individual level, as well as capturing the spread dynamics of
infectious diseases. This framework can be extended to a wide
variety of infectious diseases and shows strong potentials to aid
the design of intervention policies for epidemic control.

Index Terms—Epidemiology, network modeling, spatial net-
work, human traffic, infectious disease, COVID-19

I. INTRODUCTION

THere is an increasing interest in network models for
the characterization of virus spread in a pandemic.

Because of the flexibility of network structures, nodes can
be individuals, groups of individuals, and/or spatial locations
at which individuals perform activities in a connected way.
Links can be social contact patterns between individuals,
interrelationships between groups of the population, and
transportation connectivity among spatial locations.

Extensive studies have been conducted on network models
that consider individuals as nodes to characterize the spread
dynamics of infectious diseases. For example, Pastor-Satorras
et al. [1] formulated an SIS spreading dynamics model in
exponential and scale-free networks. In their model, infection
occurs between a susceptible node and an infected node
under a certain probability at each time-step. Gross et al.[2]
proposed to study SIS dynamics in adaptive networks where
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the structure of connectivity between nodes dynamically re-
sponds to the change of human behaviors over time. Wu et al.
[3] investigated the influence of the community structure in
social networks on the dynamical process. A major drawback
of these works is the lack of human mobility patterns in
infectious disease modeling.

However, the pattern of human mobility is a critical factor
of epidemic diffusion. From the Google and Apple mobility
data, Cot et al. [4] observed a strong decreasing trend of
COVID-19 infection rate occurring two to five weeks after
the onset of human mobility reduction in Europe and in
the United States. Zhang et al. [5] showed that changes
in contact patterns are significantly shaping the COVID-19
spread dynamics in China. Hence, a number of frameworks
have been developed to incorporate human mobility patterns
in epidemic models. For example, the metapopulation method
proposed by Watts [6] gained a lot of popularity as it
allows the spatial migration of sub-population groups to
be modeled in system dynamics models. This framework
operates in a hierarchical level, in which local contexts
assume homogeneous mixing of sub-population groups and
are then embedded in a nested level. Note that this model
sticks to the assumption of aggregated human behaviors.
In other words, the heterogeneity of human activities tends
to be underestimated in the spatial environment. There is
an urgent need to develop network-based models that are
capable of providing a detailed representation of human
activities in order to capture the complexity and heterogeneity
of epidemic dynamics in the community.

Daily activities of residents in the community are often
interconnected through a number of key spatial points of
interests (POI) (e.g., schools, grocery stores, shopping malls).
The spatial data are readily available from geographical infor-
mation systems (GIS) providers (i.e., US Census Bureau [7]).
However, little has been done to extract the network structure
from spatial data to model movements of people living in the
community and capture spatiotemporal dynamics pertinent
to the transmission and spread of infectious diseases. In
this paper, we aim to fill the gaps and develop a novel
network-based framework for the characterization of human
behaviors and epidemic dynamics in community networks.
Our contributions are summarized as follows:

• We derive the community network from the geographi-
cal information systems (GIS) data.

• We leverage the derived network to model human activ-
ities and infectious disease transmission at micro-level
details during the virus spread process.
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II. RESEARCH METHODOLOGY

In this section, we first discuss how to derive the spatial
network of university communities from the spatial data.
Then, we provide details about the human movement model
in the spatial network. Finally, we discuss the infection model
to characterize the spatiotemporal dynamics of the virus
spread in community networks.

A. Spatial Modeling of Community Networks

Many real-world systems can be described by network
models with a large number of nodes that are connected
by edges/links. In a small-scale community, residents often
travel through a list of key spatial locations that are connected
by roads. However, little has been done to extract the network
structure from roadway data to model individuals’ activities
and capture the dynamics of infectious disease in community
networks of a spatial region.

In this investigation, we consider OpenStreetMap [8] as
the main data source to derive the spatial network for
the community of interest. The OpenStreetMap uses 2005
TIGER/Line roads as fundamental data source and enriches
its platform through additional road features and attributes,
such as pedestrian paths through parks, bike lanes, and trails.
With the specified place name, OpenStreetMap’s Overpass
API can provide a detailed road map for the spatial area of
interest. The place name can be an area that is within certain
distances of an address, a university, and a city. Then, the
road network can be constructed as follows.

Let G(V,E) be an undirected graph for the community
network, where V is the set of road junctions as nodes and
E is the set of relations between two junctions as edges
[9], [10]. In the downloaded road map, it is common that
roads with long distances are segmented into several parts
even when there are no junctions of multiple routes. In
order to simplify the road network, these breakpoints are
not considered. Then, through the search of the entire road
map and the exclusion of these breakpoints, all nodes can be
identified and spatial coordinates (xi, yi) for any given node
i will be added as node attributes. An edge will be linked
between two nodes when there is a road between them and
the attributes of this road is also linked to the edge, such as
the road id, the road type, the road length, the road geometry.

B. Human Movement Model

In real-world practices, the movement of human activities
tends to form traffic flows in a connected way [11]. Hence,
we design a human movement model to simulate detailed
behaviors of human activities and interactions as human
traffics in the spatial network. Note that most of existing
studies assume that individuals have a fixed list of activities
in certain spatial locations (e.g,, 2 hours in commuting and
8 hours in either workplaces or shopping malls). Instead,
we leverage the structure of the spatial network to simulate
individuals’ movements in the spatial environment.

Figure 1 provides an illustration of the movement of a
human subject i in the spatial network. Note that this network

is the community of Penn State University Park campus.
Because human movement patterns are highly heterogeneous,
the population of the community is divided into different
activity groups (e.g, high, medium, and low), which corre-
sponds to the number of nodes they are going to visit. In
other words, individuals with a lower level of activity tend
to visit fewer nodes than those in higher groups on a daily
basis. The blue line in Figure 1 shows the planned path for
a human subject i, The planned path consists of a starting
node, a destination node, and the route. The starting node is
determined by the network-oriented sampling from nodes of
the spatial network. Then, the destination is chosen based
on the activity category and other factors (i.e. workplace
settings). Also, we assume that individuals follow the shortest
path to plan the route that can be determined by Dijkstra’s
algorithm [12]. During the simulation, individuals plan the
route daily. The movement of human activities is scheduled in
a day of 24 hours as follows, the daily activity is sparse before
8 AM, becomes busier at 8 AM, and slows down after 9 PM.
The number of individuals actively moving and interacting in
the spatial network is time-dependent and at each time slot,
new individuals become active and join the human activity
network. Because the daily activity slows down after 9 PM,
no new human subjects will be added.

C. Disease Transmission In the Community Network

When individuals move and interact with each other, the
virus quickly spreads in the community. As shown in the
left dash circle of Figure 2, when susceptible individuals and
virus carriers share the same environment, infection occurs.
In this paper, we assume that infection mainly occurs in the
nodes but rarely between nodes of the spatial network. The
infection probability fi,j of an individual i getting infected
by a virus carrier j depends on a number of factors, which
can be expressed as

fi,j(xi,j , si, ρ) =
1

[1 + ρe−(1−si)xi,j ]1/ρ
, 0 < si, ρ < 1 (1)

where ρ is the disease transmissibility that describes how
likely an individual gets infected by a disease on average, si
is the susceptibility of an individual that is related to different
risk factors (e.g., age, gender, and comorbidity) and xi,j is the
exposure risk of a susceptible individual i from a surrounding
virus carrier j that maps a virus carrier’s capability to infect
susceptible individuals to the risk value. We assume that it
can be modeled with a logit function [13] with the infectivity
level rj of a surrounding virus carrier, that is

xi,j = log
rj

1− rj
, 0 < rj < 1 (2)

Some virus carriers, also called ”super spreaders”, may
have higher infectivity levels than others. In addition, larger
gathering events and imported cases are other major concerns
for the virus spread process in the community. Based on
either the geographical data or network structure, spatial
entities/nodes of the network are categorized into different
gathering levels. When a virus carrier and a susceptible
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Fig. 1. Human activity and traffic in the spatial network (Note: H - high ; M - medium ; L - low.)

Fig. 2. An illustration of virus transmission and spread process in the community network (Youtube demo link: https://youtu.be/mKC TXry3Lc)

individual come across a node of high gathering levels, the
infection probability will be adjusted to a higher value. In ad-
dition, several nodes from the spatial network are considered
as travel-related nodes to model imported cases in the spatial
region. When individuals visit these nodes during their daily
activities, they have a certain probability of getting infected
from just visiting. On the other hand, when individuals have
protective measures (e.g, mask-wearing and social distance of
6-feet), their probability of getting infected with surrounding
virus carriers will be adjusted to a lower value.

III. EXPERIMENTS AND RESULTS

In the simulation, we consider the community of Penn
State University Park campus where a population of 10000
people live, move, and interact with each other. There are
7903 nodes/spatial entities and 20533 edges/roads in the com-
munity network. In comparison with random, small-world,
and scale-free networks, the derived community network has
a smaller value of the average degree and tends to have much
longer distances of shortest paths between nodes. As such, the
probability of individuals interacting with each other becomes
smaller given the network of the same size (i.e, number of
nodes). In addition, nodes/POIs of the community network

are categorized into five groups to represent different levels
of gathering events (e.g., no gathering, virtual-only activities,
smaller outdoor and in-person gatherings, medium-sized in-
person gatherings, and large gatherings). Then, 100 nodes out
of those in no gathering groups are randomly select to model
travel-related risks outside the community network. In other
words, when individuals visit nodes pertinent to high-risk
travel locations, their infection risks will be increased.

Five levels of gathering events are considered to quantify
different gathering events (e.) which are quantified by visiting
different POIs/nodes of the community network. When indi-
viduals visit nodes pertinent to large gathering events, their
infection risks will be increased. Similarly, the risk factor of
travel history can be simulated by randomly assigning 100
POIs from no-gathering groups to represent different levels
of travel-related risks.

Because such a community consists of students, faculties
and staffs, there are four age groups: (1) 18-35 (2) 36-
45 (3) 46-60 (4) 60+ and each group of which equals
70%, 15%, 12% and 3% of the entire population, respec-
tively. The total simulation time is 60 days with a time
step of 1 hour. In the human activity network, individuals
are categorized into five activity groups to characterize the
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heterogeneity of human activities in the community. In the
disease transmission module, we assume that the percentage
of symptomatic individuals is about 50% of the infected
population and 3.4% of symptomatic individuals need to
be hospitalized after symptom onset. The transition time
between exposed state and symptom onset takes about 5 days
and the time between symptom onset and recovered state is
about 12 days [14]. The Poisson distribution is considered to
model the transition between these states. When individuals
have protective measures (i.e., wearing masks), the infection
probability fi,n will be reduced by 86%.

Fig. 3. Temporal characteristic curves of virus spread when (a) only 20% of
the population and (b) more than 80% of the population in the community
have protective measures

Figure 3(a) and 3(b) respectively shows the time evolution
of infectious disease spread when only a few individuals
(e.g, 20% of the population wears a mask for sure) and the
majority of the population (e.g., over 80% of the population)
take protective measures. The red curve in both plots reach
the peak value on the 20th day but there is a decreasing value
of 2.56% infection cases at this moment, which is equiva-
lent to 256 out of 10000 people in the spatial community.
Because the virus spread process is slowing down due to
non-pharmaceutical interventions (e.g., masks, hygiene and
social distancing) from more people living in the community,
total cases (%) are reduced from 64.97% to 59.06% at the
end of 60 days. In other words, protective measures are
critical to mitigate the virus spread, reduce the total number
of infections, and thereby save more lives in the community.

IV. CONCLUSIONS

Network models provide valuable frameworks to study the
dynamical process of infectious disease spread in the human
population. In the past, several research works have been
done to understand the spread dynamics of infectious diseases
in complex networks of which individuals are represented as
nodes and their social connections as edges. However, little
has been done to consider epidemic systems as networks
of spatial entities to which individuals are connected and
over which individuals dynamically move and interact with
each other in the community. This paper presents a novel
framework to characterize the network spread of infectious
diseases in community networks. First, we derive the network
structure of the community from the spatial data. Then,
we design a human movement model to provide a detailed
representation of networked human activities. Finally, we
propose an infection model to capture the spread dynamics of
infectious diseases in the community network. Experimental

results show that the proposed framework is not only capable
of providing detailed behaviors of individuals in the commu-
nity network, but also characterizing the spread dynamics in
the community network. The proposed simulation models can
be further utilized for the design of clinical testing programs
and the investigation of traffic control in the spatial network
in order to mitigate the virus spread process.
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