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Abstract— From generating never-before-seen images to do-
main adaptation, applications of Generative Adversarial Net-
works (GANs) spread wide in the domain of vision and graphics
problems. With the remarkable ability of GANs in learning the
distribution and generating images of a particular class, they
have been used for semi-supervised disease detection in medical
images such as COVID-19 and Pneumonia in X-rays. However,
the challenge is that if two classes of images share similar
characteristics, the GAN might learn to generalize and hinder
the classification of the two classes. In this paper, first we use
MNIST and Fashion-MNIST datasets that are easy to visually
inspect, to illustrate how similar images cause the GAN to
generalize, leading to the poor classification of images. We then
show how this generalization can misclassify pneumonia X-rays
as healthy cases when using GANs for semi-supervised detection
of pneumonia. We propose a modification to the traditional
training of GANs that, using small sets of labeled data, allows
for improved classification in similar classes of images in a
semi-supervised learning framework.

I. INTRODUCTION

Generative Adversarial Networks [1] is one of the most
exciting inventions in machine learning in the past decade.
While applications of GANs spread wide in the field of
computer vision, image classification using GANs is rel-
atively unexplored. One of the early uses of GANs in
image classification was detecting anomalies in images,
first introduced by Schlegl et al. [2] to detect and identify
anomalies in the form of retinal fluid or hyper-reflective
foci in optical coherence tomography (OCT) images of the
retina. By defining a variation score V (x) (eq. 2), their
proposed Anomaly Detection GAN (AnoGAN) captured the
characteristic and visual differences of two images; one
generated by the GAN and one real image. The idea was
to, for instance, train the GAN on only healthy images.
When GAN is trained, the generator can generate images
similar to those in the healthy image class. During the test
phase, the variation score V (x) must be low if the test image
is healthy and GAN’s generator (G) can generate a similar
image to that of the healthy image. If the test image is not
healthy and contains anomalies, V (x) would be larger, and
the generated image would look visually different than the
real image containing anomalies.

Recently, RANDGAN, a Generative Adversarial Network
was proposed for binary classification of COVID-19 negative
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(healthy and viral pneumonia) and COVID-19 positive chest
X-ray images, without the need to use any COVID-19
positive images for training the model [3]. By training two
GANs, one on normal X-rays and one on pneumonia X-
rays, the authors calculated a variation score for COVID-19
negative (normal and pneumonia) images [3] where a higher
variation score for image x increased the probability of the
image belonging to COVID-19 positive category (unknown
class) while a lower variation score increased the probability
of image x belonging to one of the known classes (normal
and pneumonia). In this work, using a similar approach to
RANDGAN [3] and AnoGAN [2], we used DCGAN [4] for
one-class classification. By training the GAN on the class
of known (C1) images with labels, we aimed to detect the
images of the unknown class (C2).

We observed that, in some instances, training a GAN on
images of class C1 generated not only low variation scores
for test images of the same class (expected behaviour), but
also low scores for test images of class C2 (unexpected
behaviour), hindering the ability to classify C1 from C2.
We hypothesized the reason to be the ability of the GAN’s
generator G, being trained on C1 images, generalizing to
learn and generate images that visually look similar to C2 im-
ages. In this work, we carried out multiple experiments using
different datasets to understand how visually similar images
affect GAN-based image classification’s performance. We
propose MCGAN, a GAN-based multi-class classifier, to
overcome the challenge of classifying visually similar images
using GANs. By using available labeled images from both
classes in training the MCGAN, we force G to not generalize
in a way that can generate similar images to images of other
classes. We used images from the MNIST and Fashion-
MNIST datasets, which are visually easy to inspect, in
order to understand the generalization problem of GANs for
classifying similar classes of images. We then showed how
the generalization problem can hinder classification of more
challenging problem, such as detection on pneumonia in X-
rays, where inspection of images is more challenging non-
experts.

II. GENERATIVE ADVERSARIAL NETWORKS

A GAN is a deep learning model comprised of two main
parts; Generator (G) and Discriminator (D). G can be seen as
an art forger that tries to reproduce artwork and pass it as the
original. D, on the other hand, acts as an art authentication
expert that tries to tell apart real from forged art. Successful
training of a GAN is a battle between G and D where if
successful, G generates realistic images and D is not able to
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tell the difference between G’s generated images compared
to real images. G takes as input a random Gaussian noise
vector and generates images through transposed convolution
operations. D is trained to distinguish the real images (x)
from generated fake images (G(z)). Optimization of D and
G can be thought of as the following game of minimax [1]
with the value function V (G,D):

min
G

max
D

V (D,G) =

Ex∼P data(x)
[logD(x)] + Ez∼P z(z)

[log(1−D(G(z)))]
(1)

During training, G is trained to minimize D’s ability to
distinguish between real and generated images, while D is
trying to maximize the probability of assigning "real" label to
real training images and "fake" label to the generated images
from G. The Generator improves at generating more realistic
images while Discriminator gets better at correctly identify-
ing between real and generated images. Today, when the term
GAN is used, the Deep Convolution GAN (DCGAN) [4] is
the architecture that it refers to.

A. Multi-class GAN

The goal of the proposed GAN-based multi-class (MC-
GAN) classifier is to distinguish two classes of data (C1,
C2) from one another, while there are labels available for one
class (C1) and limited labeled data for the other class (C2).
A traditional GAN’s (DCGAN, AnoGAN, etc.) discriminator
takes as input the generator’s output (labeled Fake) and a real
image (labeled Real). This forces the generator to learn the
distribution of the images from the real class. If the images
of C1 and C2 shares similar characteristics, training the GAN
on the images of C1 could cause G to learn and generalize
well enough, leading to generating similar images to C2 and
hence, hindering the classification of the two classes (C1 vs.
C2). To overcome this challenge, we feed a third input to
the discriminator; available labeled images of C2.

While these are real images from C2, we label them as
Fake. This forces the generator not to learn to generalize to
this similar class (C2) while learning the characteristics of
C1. When G generates an image that could pass as belonging
to C2, the discriminator flags it as a fake image, and G re-
evaluates its learning at those stances. Figure 1 shows the
architecture of Multi-class GAN (MCGAN).

B. Variation Score

The Variation score V (x) for the query image x, proposed
by Schlegl et al. [2], is defined as;

V (x) = (1− λ)× LR(z) + λ× LD(z) (2)

where LR(z) (eq. 3) and LD(z) (eq. 4) are the residual
and discriminator loss respectively that enforce visual and
image characteristic similarity between real image x and
generated image G(z). The discriminator loss captures image
characteristics using the output of an intermediate layer of the
discriminator, f(.), making the discriminator act as an image

encoder. Residual loss is the pixel-wise difference between
image x and G(z).

LR(z) =
∑
|x−G(z)| (3)

LD(z) =
∑
|f(x)− f(G(z)| (4)

Before calculating V(x) during test, a point zi has to be found
through back-propagation that tries to generate an image as
similar as possible to image x. The loss function used to find
zi is based on residual and discriminator loss defined below.

L(zi) = (1− λ)× LR(zi) + λ× LD(zi) (5)

λ adjusts the weighted sum of the overall loss and variation
score. We used λ = 0.2 to train our proposed MCGAN and
AnoGAN [2]. Both architectures were trained with the same
initial conditions for performance comparison.

III. DATASETS

We used images from three different datasets. MNIST [5]
dataset that contains 60,000 training images of handwritten
digits and 10,000 test images. Fashion-MNIST [6] is a
dataset of Zalando’s article images—consisting of a training
set of 60,000 examples and a test set of 10,000 examples.
COVIDx dataset [7] that contains healthy (8,066), pneumonia
(5,289) and COVID-19 (589) diagnosed X-ray images of the
lung. We used the normal and pneumonia classes of images
from the COVIDx dataset for our experiments and did not use
the COVID-19 images. All gray-scale images were resized
to 128× 128 pixels, with pixel intensities scaled to -1 to 1.

IV. EXPERIMENTS

A. MNIST and Fashion-MNIST

The purpose of using MNIST and Fashion MNIST datasets
is to illustrate how similar images cause the GAN to gen-
eralize, leading to the poor classification of images. To
pick a subset of similar classes from MNIST and Fashion-
MNIST (F-MNIST) datasets that could cause generalization
in GANs, we used metric learning [8]. The goal of metric
learning is to train models that can embed inputs into a
high-dimensional space such that "similar" inputs are located
close to each other. To bring images from the same class
closer to each other via the embedding, the training data
was constructed as randomly selected pairs of images from
each class matched to the label of that class, instead of
traditional (X,y) pairs where y is the label for corresponding
X as singular images of each class. By embedding the images
using a shallow three-layer CNN, we computed the similarity
between the image pairs by calculating the cosine similarity
of the embeddings. We used these similarities as logits for
a softmax. This moves the pairs of images from the same
class closer together. After the training was complete, we
sampled 10 examples from each of the 10 classes, and
considered their near neighbours as a form of prediction; that
is, the example and its near neighbours share the same class.
This is visualized as a confusion matrix shown in Figure 2.
The numbers that lie on the diagonal represent the correct
classifications and the numbers off the diagonal represent
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Fig. 1. Multi-class Generative Adversarial Network

the wrong labels that were misclassified as the true label.
We intentionally used a shallow three-layer CNN to enforce
some misclassification, as achieving near-perfect results in
classifying datasets such as MNIST using CNNs is easy.
Using the information from Figure 2, we picked the class
pairs (9, 4) and (8, 3) from the MNIST dataset and (Coat,
Shirt), (Coat, Pullover), and (Boot, Sandal) from F-MNIST
dataset. For each pair of similar classes of images, we trained
one AnoGAN and our proposed MCGAN. While AnoGAN
uses only labels of one class(C1), MCGAN needs labels for
both classes (C1 and C2). For the pairs of similar images,
while training MCGAN, we used all the labels available for
both classes. In turn, this makes the MCGAN a supervised
model. Later on, for the COVIDx dataset, we explore a more
limited set of labeled images from second class (C2).

B. X-ray Data

We used the healthy and pneumonia X-rays from the Chest
X-ray dataset [7] dataset in order to learn the classification of
the two classes of images. While training an AnoGAN, we
used images of one class with corresponding labels (normal
or pneumonia). For training MCGAN, we used images of
both labels; the class of images we want to learn to generate
(C1) was used with all the labels while partial images from
the class of similar images we do not want the GAN to
(C2) generalize to was used. Through multiple instances of
training the MCGAN, we studied the effects of available
labeled data size from class C2 images on classification of
C1 and C2.

C. Competing Methods

Ruff et. al proposed a Deep One-class classification model
(Deep SVDD) [9] that outperformed shallow and deep semi-
supervised anomaly detection models at the time, including
AnoGAN (DCGAN and AnoGAN follow the same archi-
tecture and can be used interchangeably). We compare our
Inception-GAN against these models (Isolation Forest, One-
class SVM, DCGAN and Deep SVDD) as baselines.

D. Shallow Baselines

We followed the same implementation details of the shal-
low models as used in Ruff et. al’s Deep SVDD study. (i)

One-class SVM (OC-SVM) [10] finds a maximum margin
hyper-plane that best separates the mapped data from the
origin. (ii) Isolation Forest [11] (IF) isolates observations
by randomly selecting a feature and then randomly selecting
a split value between the maximum and minimum values of
the selected feature. We set the number of trees to t = 100
and the sub-sampling size to 256, as recommended in the
original work

E. Deep Baselines

Our Inception-GAN is compared with two deep ap-
proaches. (i) Ruff et. al’s Deep SVDD showed improved
accuracy of one class classification in a framework where one
class from MNIST [5] and CIFAR-10 [12] was kept as the
known image, and the rest of the classes were treated as the
anomaly. Deep SVDD learns a neural network transformation
from inputs into a hypersphere characterized by center c and
radius R of minimum volume. The idea is that this allows
for the known (pneumonia / healthy) class of images to fall
into the hypersphere and the unknown (healthy / pneumonia)
class to fall outside of the hypersphere. (ii) DCGAN /
AnoGAN is trained as the base GAN benchmark for the
task of pneumonia detection

V. RESULTS

A. MNIST and Fashion-MNIST

We calculated variation scores for both DCGAN and
MCGAN for each pair of similar classes of images. Lower
variation scores would translate to the test image having more
probability of belonging to the class of images the GAN was
trained to generate images of, while a larger variation score
decreased this probability. We calculated the area under the
ROC curve (AUC) of each model. Table I shows the AUC
for one-class classification for each data pair and model. For
each pair (C1, C2) for DCGAN, the first AUC is the result of
training GAN on C1 images and the second AUC is the result
of GAN training on C2 images. For MCGAN, the first AUC
is the result of using all of C1 images with Real labels and
all of C2 images with Fake, while the second AUC is for vice
versa. In both scenarios of using MCGAN to generate images
of class C1 or C2, MCGAN outperformed DCGAN in one-
class classification. MCGAN in this scenario used all labels
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Fig. 2. Confusion matrix of MNIST and F-MNIST embeddings

for both classes. This is solely to demonstrate the problem
of one-class classification of similar classes of images using
GANs. When sufficient labeled data is available, supervised
classifiers traditionally yield better performance. Figure 3
shows how a DCGAN, trained on images from C1, can
generate images similar to C2 if both classes have similar
characteristics in a way that while learning to generate C1
images, G learns to produce similar images to C2. MCGAN,
on the other hand, forces the generator to avoid this gener-
alization, which helps the classification task (table I). The
first row of Figure 3 shows the test image which DCGAN
and MCGAN’s generators tried to generate a similar image
of (4 and 3) while having been trained to generate images of
class 9 and 8 respectively. The DCGAN’s output looks closer
to the test image compared to MCGAN. The second row
result from the two GANs trained to generate images of class
Boot and generate images similar to test images from class
Sneaker and Sandal respectively. While DCGAN learns to
generate images similar to Sneaker and Sandal while learning
from images from class Boot, our MCGAN succeeds in not
making this generalization.

B. Detection of Healthy and Pneumonia X-rays

To detect pneumonia from healthy X-rays using DCGAN,
we trained one DCGAN on normal images and one on
pneumonia images. Likewise, we trained IF, OC-SVM and
Deep SVDD networks once using normal images and once
using pneumonia images and tested the performance of the
models on 1,000 randomly selected images (500 normal and
500 pneumonia) from the COVIDx dataset. Table II shows
the AUC for classification of normal and pneumonia X-rays
using different methods, once trained using normal images
only and once trained on pneumonia images.

The DCGAN’s poor performance in classifying the im-
ages, when trained on normal images, suggests this could be
due to the generalization problem. The reason for success of
the GAN trained on pneumonia images and its failure when
trained on normal images can be deducted from Figure 4.

When the GAN is trained on normal images, the generator
learns to generate images that in the beginning look noisy and
as training progresses, they look more healthy-like. Figure
4’s green circle shows how the noisy lung image, when
learning to generate normal images, could be classified as
pneumonia. Whereas when the GAN is trained to generate
pneumonia images (Figure 4 - yellow circle), the noisy image
when training to generate pneumonia images, cannot be
identified as a healthy lung.

We trained different instances of MCGAN, using all
labeled normal training images and randomly chose 50, 100,
200, 400, 800, 1600, 3200 and finally all (4,789) of labeled
pneumonia training images as the secondary class (C2) to
train MCGAN. first row of Table III shows the effect that
different sizes of labeled images from the pneumonia class
(C2) have on training the MCGAN, with a fixed number
(7,566) of normal (C1) images. With 400 labeled pneumonia
images, the model achieves the same accuracy as Deep
SVDD trained only on normal images (AUC: 0.64). With 800
labeled images, MCGAN outperforms the one-class classi-
fiers and keeps improving with increase in the number of
labeled pneumonia images. In finding success when training
the DCGAN on pneumonia images, we experimented with
training instances of the DCGAN only on the same number
of labeled pneumonia images as MCGAN used (50, 100, 200,
400, 800, 1,600, 3,200 and 4,789) to understand whether
DCGAN with limited number of labels can outperform
MCGAN which uses the same number of labeled pneumonia
images and all normal labeled images. Second row of Table
III shows the AUC achieved by DCGAN, trained only on
pneumonia images, in detecting pneumonia and normal X-
rays. DCGAN failed to converge and generate images of
pneumonia when trained on 800 images and less. With
1,600 labeled pneumonia images, DCGAN and MCGAN
achieve the same performance. With larger number of labeled
pneumonia data, DCGAN outperforms MCGAN without the
need for any normal labeled images. With limited pneumonia
(800 images and less) and sufficient normal data however,
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MNIST MNIST F-MNIST F-MNIST F-MNIST
(8 / 3) (9 / 4) (Boot / Sandal) (Coat / Shirt) (Coat / Pullover)

DCGAN 0.87 / 0.9 0.88 / 0.78 0.79 / 0.72 0.68 / 0.54 0.67 / 0.32
MCGAN 0.92 / 0.95 0.91 / 0.84 0.87 / 0.82 0.79 / 0.74 0.77 / 0.71

TABLE I
CLASSIFICATION AUC OF DCGAN USING ONE LABEL ONLY AND MCGAN USING BOTH LABELS

Fig. 3. DCGAN and MCGAN generated images

IF OC-SVM Deep SVDD DCGAN
Trained on normal 0.51 0.53 0.64 0.46

Trained on pneumonia 0.49 0.54 0.69 0.76
TABLE II

CLASSIFICATION AUC OF DIFFERENT MODELS, TRAINED ONCE ON ONLY NORMAL AND ONCE ON ONLY PNEUMONIA IMAGES

Fig. 4. DCGAN generator output throughout training

MCGAN achieves he best classification performance.

VI. DISCUSSION

In classification settings where we do not have enough
labeled images for a class, semi-supervised modes of training
that do not require images of that class to train are of
value. While GANs can be used to classify images, we

showed that in some settings where labeled images share
similar characteristics, the generalization ability of GANs
can hinder the performance of classification. Using images
from MNIST, Fashion MNIST and Chest X-rays, we showed
how, for instance, a GAN trained to generate images of
healthy chest X-rays can also generate images that are similar
to X-rays with pneumonia. To use GANs in classifying
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#pneumonia 50 100 200 400 800 1,600 3,200 all (4,789)
MCGAN’S AUC 0.54 0.57 0.62 0.64 0.67 0.68 0.69 0.71
DCGAN’S AUC Fail Fail Fail Fail Fail 0.68 0.72 0.76

TABLE III
CLASSIFICATION AUC FOR DCGAN AND MCGAN MCGAN TRAINED ON ALL NORMAL IMAGES AND DIFFERENT NUMBER OF PNEUMONIA IMAGES

WHILE DCGAN TRAINED ONLY ON PNEUMONIA IMAGES

normal from pneumonia X-rays, this generalization would
result in not only low variation scores for healthy X-rays, but
also for pneumonia X-rays. We proposed MCGAN, which
used both classes in training the GAN’s discriminator. By
labeling the No as fake, we guided the generator to not
generate images that can identify as having pneumonia while
learning to generate images of normal X-rays. The labeling
of the similar class of images as fake improved classification
of similar classes from one another.

The goal for this study was not to achieve the state-of-the-
art classification results using semi-supervised methods on
the the three datasets, rather identifying a potential problem
when using GANs for classification tasks and using a simple
GAN architecture and showing how the proposed modifica-
tion in training the discriminator can improve classification
in settings where over-generalization is possible. With de-
velopment of more complicated GAN architectures, such as
RANDGAN [3], this modification can further improve the
accuracy of the models.

VII. CONCLUSION

In this work, we demonstrated how GANs could learn
to generalize to different classes of images if they share
similar characteristics with the class of training images.
This generalization can hinder the ability of GANs for the
task of image classification. We proposed using available
labeled images in training the discriminator to penalize the
generalization. The multi-class discriminator training showed
improved accuracy of semi-supervised image classification.
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