
  

  

Abstract—Despite the technological advancements, the 

employment of passive brain computer interface (BCI) out of the 

laboratory context is still challenging. This is largely due to 

methodological reasons. On the one hand, machine learning 

methods have shown their potential in maximizing performance 

for user mental states classification. On the other hand, the 

issues related to the necessary and frequent calibration of 

algorithms and to the temporal resolution of the measurement 

(i.e. how long it takes to have a reliable state measure) are still 

unsolved. This work explores the performances of a passive BCI  

system for mental effort monitoring consisting of three frontal 

electroencephalographic (EEG) channels. In particular, three 

calibration approaches have been tested: an intra-subject 

approach, a cross-subject approach, and a free-calibration 

procedure based on the simple average of theta activity over the 

three employed channels. A Random Forest model has been 

employed in the first two cases. The results obtained during 

multi-tasking have shown that the cross-subject approach allows 

the classification of low and high mental effort with an AUC 

higher than 0.9, with a related time resolution of 45 seconds. 

Moreover, these performances are not significantly different 

from the intra-subject approach although they are significantly 

higher than the calibration-free approach. In conclusion, these 

results suggest that a light (three EEG channels) passive BCI 

system based on a Random Forest algorithm and cross-subject 

calibration could be a simple and reliable tool for out-of-the-lab 

employment.  

 

I. INTRODUCTION 

Mental effort, mental workload and mental strain are the 
most widely used terms to define the relationship between the 
cognitive resources of a subject performing a task and the 
difficulty of the task itself [1]. The interest in such a cognitive 
state was born in the field of human factors, where the 
monitoring of an operator’s cognitive state is crucial to avoid 
onerous consequences. Thanks to the convergence of human 
factors requirements and neuroscience techniques, 
neurophysiological measures have been proposed as a valid 
tool to provide an objective and continuous, as well as online 
measurement of an operator's mental effort, leading to the 
concept of passive brain computer interface (BCI). A typical 
passive BCI translates the brain activity unconsciously 
modulated by the subject’s cognitive state into an output 
aiming to trigger the surrounding environment [2]. On the one 
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hand, the acquisition of brain activity through 
electroencephalography (EEG) can be easily performed thanks 
to the recent technological improvement of minimally invasive 
systems, with few and gel-free electrodes [3]. On the other 
hand, the measurement of mental effort during real tasks by 
means of EEG signals is still challenging. The employment of 
Machine Learning (ML) techniques has allowed a step 
forward in this direction, by paving the way to decode and 
characterize task-relevant brain activity modulation and to 
distinguish it from noninformative features. However, there 
are still practical issues preventing the employment of passive 
BCI out of the lab.  

One crucial aspect is related to calibration. In a supervised 
approach, labelled observations must be available in order to 
calibrate the passive BCI, before using it as a predictor for new 
data [4]. In this regard, a reliable system needs a calibration 
phase, which is long and difficult to be performed during a 
realistic use, considering also that to work properly ML needs 
to be re-calibrated frequently [5]. In recent years, many studies 
have been focused on finding a methodology to avoid or at 
least reduce the calibration phase, proposing unsupervised 
techniques that at the moment suffer from a lower performance 
compared to supervised ones [6].  

A second important aspect is the temporal resolution 
requested from the passive BCI, that is how long it takes to 
have a reliable state measure. In safety-critical applications, 
like for example pilots monitoring, the passive BCI is required 
to provide answers within few seconds. Conversely, if used 
during the operator’s training phases it should react also in 
longer times, for example, every 30 seconds or even minutes. 
A low temporal resolution usually corresponds to a high level 
of algorithm accuracy. Therefore, it is necessary to find a good 
compromise between a proper temporal resolution, able to 
guarantee an acceptable classification accuracy, depending on 
the specific context requirements. 

In this work, we compared the performance of a passive 
BCI system monitoring mental effort using different temporal 
resolutions and three different approaches for calibration. 
Firstly, we performed an intra-subject calibration, which is the 
standard approach during which the system is trained using the 
calibration dataset available from the subject him/herself. 
Secondly, to mitigate the calibration issue, we tested a cross- 
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subject approach, training the model with the calibration data 
of other subjects performing the same task. In fact, after 
recording brain activity from a specific pool of subjects, it 
could be possible to avoid the calibration from a new coming 
subject. Finally, we computed the mental effort neurometric 
(the average of frontal activity in the theta band) as a 
calibration-free method [7]. To mimic a real situation, in 
which few EEG channels should be employed, we used just 
three frontal EEG channels to realize the previously mentioned 
approaches.   

II. MATERIAL AND METHODS 

A. Dataset 

In the current work, we used the EEG data described in [8].   
The experiment was conducted following the principles 
outlined in the Declaration of Helsinki of 1975, as revised in 
2000. It received the favourable opinion from the Ethical 
Committee of the National University of Singapore (NUS), 
Centre for Life Sciences (NUS-IRB Ref. No: 13-132, NUS-
IRB Approval No: NUS 1864). In particular, eight subjects 
performed the NASA - Multi Attribute Task Battery (MATB, 
Fig. 1), a computer-based multi-task designed by the NASA to 
evaluate the cognitive operational capability during simulated 
conditions requiring different levels of mental effort. For this 
analysis we aimed to discriminate between the Easy and Hard 
task levels, classifying respectively the Low and the High 
mental effort. In particular, four repetitions of 2.5 minutes long 
Easy and Hard conditions were available for each subject. 

 

Figure 1. Multi Attribute Task Battery (MATB) interface. There 

is (a) the emergency lights task; (b) the task of cursor tracking; (c) 
the radio communication task and, finally, (d) the fuel levels 

managing 
 

B. Features Computation 

The EEG signal was band-pass filtered (1-30 Hz) and then 
segmented into epochs of 2 seconds, shifted by 0.125 seconds. 
The FPz channel has been used to remove eye-blinks 
contribution from each epoch of the EEG signal, by using the 
Reblinca algorithm [9]. Therefore, a threshold criterion has 
been applied: if the EEG signal overcomes the threshold of 100 
(µV) it has been marked as artifact and removed from the 
analysis. After that, for each epoch, the power spectral density 
(PSD) was calculated using a periodogram with Hanning 
window (2 seconds). As mentioned before, the PSD values in 
the theta band and for three channels (F3, F4, Fz) has been 
used as spectral features. 

C. Algorithm and Tuning 

For this analysis, the Random Forest (RF) has been 
employed. The RF is a nonlinear classifier [10] belonging to 
the ensemble methods. This family of classifiers allows 
generalizing well to new data constructing sets of individual 
and independent tree classifiers. For this analysis, we used the 
RandomForestClassifier function contained in the Scikit-learn 
package [11]. This function allows us to define the input 
parameters described in Table 1. 

TABLE I.  RANDOM FOREST PARAMETERS 

Parameter Values 

criterion gini or entropy 

n estimators From 1 up to 100 

min samples split From 5 up to 100 

min sample leaf From 5 up to 100 

max leaf nodes From 2 to 20 

min impurity decrease From 0.00005 to 0.01 

max depth From 2 up to 100 

 

An iterative process was built in order to optimize a limited 
number of parameters at each step. Once the parameters were 
divided into blocks, GridSearchCV functions of the Scikit-
learn [11] library has been recalled setting the cross-validation 
parameter to 5. At each iteration the optimization process is 
divided into two steps: after the optimization of a block of 
parameters, they have been optimized again in a restricted 
range of values. 

D. Intra-Subject Approach 

In this case, labelled observations of each subject have 
been used to calibrate the model. The first 30 seconds of the 
training dataset (one of the four repetitions of Easy and Hard 
conditions) was used for calibration. We set 30 seconds, to 
simulate a realistic condition in which users can dedicate a low 
amount of time for the calibration phase. To assess the 
performance of the model a cross-validation approach has 
been used. In particular, the training dataset has been divided 
into 4 sessions and one session has been iteratively selected for 
training to resemble a realistic approach when there are a low 
number of data available for training.  

E. Cross-Subject Approach 

The cross-subject approach differs from the intra-subject 
because the training phase employed a set of data coming from 
subjects different from the subject of the testing phase, i.e. in 
this case for each subject a calibration dataset coming from the 
remaining subjects was generated (i.e. leave-one-subject-out 
calibration). The calibration dataset was built taking 7 subjects 
and the remaining subject was used to test the performance of 
the classifier.  

F. Mental effort Neurometric 

When calibration data are not available, mental effort can 
be assessed through a neurometric, an index based on the 
physiological knowledge underpinning mental effort. In 
particular, most of the studies showed that the brain electrical 
activity mainly involved in the mental effort analysis is the 
theta brain rhythms gathered from the Pre-Frontal Cortex 
(PFC) region [12], [13]. Therefore, the mental effort 
neurometric has been computed averaging the PSD value on 
the three frontal channels and in the theta band.  
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G. Performance evaluation 

The performances among the different conditions have 
been assessed by means of the Area under Curve (AUC,[14]). 
In particular, for each data point of testing data, it has been 
calculated the probability of belonging to the Hard class in 
output from the RF model, both for the intra and cross-subject 
approaches. Instead, for the neurometric evaluation, the PSD 
averaged over the 3 frontal electrodes on the same testing 
dataset has been used. It was then applied a moving average 
on these values, to simulate different time resolutions, starting 
from 0.125 seconds, up to 64 seconds (maximum value to be 
able to evaluate a reliable AUC value). 

The Wilcoxon signed-rank test has been used to compare 
the performance obtained through the cross-subject approach 
respectively with the intra-subject and the neurometric. 

III. RESULTS 

Figure 2 shows the statistical comparison between the 

cross-subject and the intra-subject performance for different 

time resolutions (from 0.125 to 64 seconds). As hypothesized, 

as the time resolution decreases the accuracy increases, 

reaching a plateau around 30 seconds. The intra-subject 

calibration reaches 0.98, whereas the cross-subject slightly 

exceeds 0.9. For any time resolutions, the AUC values are not 

significantly different between the two approaches.  

 
Figure 2. Averaged AUC values of intra-subjects (blue) and cross-

subjects (green) results for different time resolutions (0.125-64 
seconds). The dashed yellow line represents the results in terms of p-

values of the Wilcoxon test. The threshold of significance ( p-value = 

0.05) has been represented in red and for readability p-values>0.5 
have not been shown. 

 

The cross-subject approach has been compared with the 

neurometric. Figure 3 shows the statistical comparison 

between the cross-subject and the neurometric performances 

for different time resolutions. For every time-resolution 

higher than 2 seconds the performances obtained with the 

cross-subject approach are significantly higher than those 

obtained without calibration, namely with the neurometric. In 

particular, the neurometric starting from 18 seconds settles 

AUC to 0.73.  

 

 
Figure 3. Averaged AUC values of cross-subjects (green) and 

neurometric results (dotted red) for different time resolutions (0.125-
64 seconds). The dashed burgundy line represents the results in terms 

of p-values of the Wilcoxon test. The threshold of significance (p-

value = 0.05) has been represented in red. 

IV. DISCUSSION 

The aim of this work was to test the performance of a light 

passive BCI system in classifying mental effort associated 

with two levels of multitasking. In particular, we tested 

different calibration approaches and time resolutions, 

comparing the cross-subject performances with those 

obtained through intra-subject calibration and a calibration-

free approach based on physiological knowledge, namely the 

mental effort neurometric [7].  

We observed that intra-subject calibration reaches the 

highest values of performance, higher than 0.95, overcoming 

0.9 even at moderate temporal resolutions (15 seconds). The 

cross-subject approach did not provide significantly different 

performance compared to intra-subject, however we observed 

that to obtain an AUC of 0.9 it is necessary to decrease the 

time resolution to 45 seconds. Finally, the neurometric 

showed the lowest performance: even for the lowest time 

resolution (64 seconds) the AUC did not exceed 0.73 and is 

significantly lower than the cross-subject approach.  

Even if several steps forward have been made since it has 

been accepted the possibility that neurophysiological 

measures would be employed to predict operator’s cognitive 

state, nowadays is still not possible to use a passive BCI to 

assess the mental effort out-of-the-lab. A recent review 

dealing with workload recognition using EEG and machine 

learning raised three open issues that require further 

investigation: real-time design, generalizability, and 

interpretability of the models [15]. The current work fulfils 

these needs. 

Firstly, the number of channels usually used to classify 

workload varies from 2-128 [15]. In the case of real-time 

experimental design, it has been highly recommended to 

prefer the low- number of channels approach to reduce both 

set-up and algorithm related cost of time. In this work, we 

considered only three frontal electrodes. In fact, most of the 

recent EEG systems off-the-shelf consist mainly of a low 

number of frontal electrodes, therefore methodological 

approaches should consider this technological aspect to 

increase the usability of the passive BCI out-of- the-lab.  

Secondly, the cross-subject approach typically has lower 

performances compared to the intra-subject approach, due to 
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the higher complexity and individual variabilities [15]. 

Therefore, the generalizability of models needs to be 

investigated further also developing more robust machine 

learning models. In this work, we compared intra-subject and 

cross-subject approaches to allow for a direct comparison of 

the obtained performance. Moreover, testing also the 

neurometric performances we highlighted the advantages of 

employing a machine learning method based on cross-subject 

calibration compared to calibration-free approach. In fact, it 

has been observed that by balancing the time resolution it is 

possible to obtain classification performances higher than 0.9. 

Only 7 subjects have been used to train the model, however, 

all the available training sessions have been employed (about 

10 minutes easy and 10 minutes hard per subject). This could 

explain the fact that the obtained performances are higher 

compared to a previous work, where accuracy of 80% has 

been obtained employing a hierarchical Bayes model with 

cross-subject calibration during a similar MATB task on 8 

subjects [16]. When there is the possibility to perform a 

calibration on the single subject, the obtained results proved 

that the proposed intra-subject approach allows the 

classification of low and high mental effort using just 30 

seconds of calibration, which is in line with the results already 

obtained in the same conditions (30 seconds of calibration to 

discriminate 2 classes) [17]. 

Thirdly, regarding the importance of the models 

interpretability[15], the employment of the Random Forest 

model allows for higher interpretability compared to other 

less  “transparent” models. 

V. CONCLUSION 

Our results confirmed that a passive BCI system consisting 

of just three frontal EEG electrodes and a random forest 

model, calibrated using a cross-subject approach, could be a 

valuable and simple tool that can prevent performing a 

subject-dependent calibration. This could pave the way to the 

definition of an online index for mental effort assessment. 

Notwithstanding these encouraging results, the cross-subject 

approach is only one of the possible solutions to avoid passive 

BCI subject-dependent calibration. Other approaches such 

cross-task calibration, or other methods like unsupervised 

classification and transfer learning should be tested further to 

have a complete overview of calibration-free possibilities. In 

addition, it has to be underlined that the MATB is something 

close to a laboratory-based task. In this regard, it would be 

relevant to test the same approach on a task closer to a real-

world situation (e.g. user driving a car, or a pilot flying an 

airplane). 
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