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Abstract— Pain is a protective physiological system essen-
tial for survival. However, it can malfunction and create a
debilitating disease known as chronic pain (CP), which is
primarily treated with drugs that can produce negative side
effects (e.g., opioid addiction). Peripheral nerve stimulation
(PNS) is a promising alternative therapy; it has fewer negative
side effects but has been associated with suboptimal efficacy
since its mechanisms are unclear, and the current therapies
are primarily open-loop (i.e. manual adjustment). To adapt
to the needs of the user, the next step in advancing PNS
therapies is to “close the loop” by using feedback to adjust the
stimulation in real-time. A critical step in developing closed-loop
PNS treatment is a deeper understanding of pain processing
in the dorsal horn (DH) of the spinal cord, which is the
first central relay station on the pain pathway. Mechanistic
models of the DH have been developed to investigate modulation
mechanisms but are non-linear, high-dimensional, and thus
difficult to analyze. In this paper, we propose a novel application
of structured uncertainty to model and analyze the nonlinear
dynamical nature of the DH, and provide the foundation for
developing robust PNS controllers using µ-synthesis. Using
electrophysiological DH recordings from both naive and nerve-
injured rats during windup stimulation, we build two sepa-
rate models, which contains a linear time-invariant nominal
(average) model, and structured uncertainty to quantify the
nonlinear deviations in response from the nominal model. Using
the structured uncertainty, we analyze the naive and injured
models to discover underlying DH dynamics not identifiable
using traditional methods, such as spike counting.

I. INTRODUCTION
Acute pain is an early-warning signal, which is necessary

for minimizing contact with painful, or noxious stimuli.
However, chronic pain (CP) is a debilitating condition that
occurs when the pain system malfunctions (e.g. from injury
or disease). In the US, nearly 100 million adults are affected
by CP [1]. The primary treatment for CP is pharmaceuticals,
which have negative side effects (e.g., opioid addition), and
lose efficacy after long-term use. A promising alternative
treatment option is neuromodulation, such as peripheral
nerve stimulation (PNS) or spinal cord stimulation (SCS),
which uses brief pulses of electrical stimulation to modify
activity in targeted nerves [2]. Currently, neuromodulation
treatments produce fewer negative side effects but are as-
sociated with suboptimal efficacy since its mechanisms are
unclear and the therapies are primarily open-loop (i.e. manual
adjustment of stimulation parameters).
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Fig. 1. A) Dorsal horn illustration. B) Closed-loop PNS system with the
WDR neuron modeled with structured uncertainty. GN and W∆ are the
nominal LTI model, and the uncertain dynamics, respectively.

The next step in advancing PNS therapies is to “close
the loop” by using feedback to adjust the stimulation in
real-time. A critical step in developing closed-loop PNS
treatment is a deeper understanding of pain processing in
the dorsal horn (DH) of the spinal cord, which is the first
relay station on the pain pathway (Fig. 1A). Primary afferent
fibers transmit external sensory inputs to the DH. Wide-
dynamic-range (WDR) neurons receive both noxious (Aδ

and C fibers) and innocuous (Aβ fiber) inputs and plays
a critical role by partially regulating the ascending pain
transmission to the brain [3]. Electrophysiological recordings
of the WDR neurons can provide important information
about the dynamic pain processing changes due to CP.

One approach to developing closed-loop PNS therapies
(Fig. 1B) is to build mathematical models of the DH [4].
However, modeling DH activity can be difficult due to
the nonlinear components of the responses (i.e neuronal
plasticity and sensitization). For example, during a windup
input (repetitive brief pulses), Aβ fiber activation is rela-
tively constant but the WDR neuronal responses to C fiber
activation can change in a nonlinear fashion. This has led to
mechanistic DH models, which can be high-dimensional and
nonlinear, and thus hard to use for controller design [5], [6].
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As a result, we propose a novel application of structured
uncertainty that can then be used to build a robust PNS con-
troller [7], [8]. As shown in Fig. 1B, we model the nonlinear
WDR response with a linear time-invariant (LTI) nominal
model (GN) and structured uncertainty (W∆). Specifically,
the nominal model predicts the average windup response
across all input pulses. The structured uncertainty quantifies
the amount of deviation (i.e. uncertainty) in response from
the nominal model, across all windup pulses. As a proof of
concept, we apply this powerful tool to electrophysiological
DH recordings from both naive and injured rats to both
model and analyze the nonlinear dynamical nature of the
WDR response. From the structured uncertainty, we analyze
the naive and injured models to find i) general characteristics
across windup pulses, and ii) specific changes on individual
pulses. This methodology leads to new understanding about
the nonlinear DH dynamics, which are not identifiable using
traditional methods (e.g. counting Aβ and C fiber spikes).

II. METHODS

A. Electrophysiology recordings of WDR neurons

Fine-tip microelectrodes are used to measure in vivo
extracellular activity of the WDR neurons (Fig. 2A) from one
naive and one spinal cord injured adult male rats (all pro-
cedures approved by the Johns Hopkins University Animal
Care and Use Committee). Two windup trials (stimulation
train of sixteen, 5mA, biphasic, and 0.5 ms pulses applied
at 0.5Hz) per each animal [9].

We first identify the spikes by thresholding the data
(recorded at 10kHz) at 4 times the standard deviation of
baseline recordings. Next, to compute the firing rate, the
binary spiking data is convolved with a 1,000-point Gaussian
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Fig. 2. A) A biophysical representation of the DH. The triangle is the
recording microelectrode. The WDR neuron (W) projects to the brain. B)
The normalized WDR firing rates, from the 16 pulses, for both conditions.

window. Next, each firing rate curve is normalized by its
maximum value. Finally, the normalized firing rates, for both
windup trials, are time-locked and averaged together. Fig.
2B shows firing rates of the WDR neurons in response to
windup stimulation. We quantify these results by counting
the number of spikes from the Aβ and the C-component.

B. Modeling WDR responses using structured uncertainty
Using structured uncertainty to model the WDR responses

enables us to capture the nonlinearities and quantify the
variations in dynamics across a windup input. To determine
the model with structured uncertainty, we identify the range
of windup responses by fitting an LTI model for each windup
pulse. By dividing the response into 16 different models,
we can achieve highly accurate model predictions. Also, we
constrain the models to be linear to easily analyze the set
of models and identify characteristics which are due to the
windup pulse accumulation. We transform the set of models
into an uncertain model by identifying the nominal model
and the overall uncertainty in the model sets.

1) Identifying LTI models of WDR windup response: For
both the naive and injured conditions, we fit 16 individual
LTI continuous-time transfer function (TF) models to predict
the WDR response for each of the windup pulse. We use the
input, u(t), and the WDR firing rate, y(t), to estimate the
TF, H, which is defined by

H(s) =
a0sz +a1sz−1 +a2sz−2 + · · ·+az

b0sp +b1sp−1 +b2sp−2 + · · ·+bp
(1)

where a0 through az, and b0 through bp are fit using MAT-
LAB. Specifically, two separate sets of models are fitted, one
for the naive and one for the injured rat. We employ a search
grid to identify the number of poles and zeros that produce
the best response, across all 16 models. The number of zeros,
z, ranged between 1 and 9, and the poles, p, ranged between 2
and 10, with z < p. We find the final zero - pole combination
that produced the smallest root-mean-squared error (RMSE)
and maximum absolute error (MAE), over all TF models. We
quantify the final model results using the RMSE and MAE
between the recorded and predicted responses.

2) Building WDR models with structured uncertainty: For
this application, we model the structured uncertainty in the
input multiplicative form (Fig. 1B), which is defined as the
following set of transfer functions:

G = GN(I +W∆) (2)

We define the nominal system (GN) to be the average TF over
all 16 windup pulses. An additional TF (∆) represents the un-
certain dynamics with a unit peak gain. Finally, W is a fitted
stable Nth order minimum-phase weighting function whose
magnitude is greater than the largest relative error (between
GN and each model in the set). Therefore, W contains the
amount of uncertainty in the potential windup responses, at
all frequencies. For example, if the high frequency dynamics
are not captured by the nominal model, then the weighting
function acts as a high pass filter to reflect the frequencies
with the largest amount uncertainty [7], [8].
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III. RESULTS
A. Nonlinear windup characteristics

We first quantify these results of Fig. 2B by counting the
number of spikes from the Aβ and the C fibers (Fig. 3).
The naive rat shows a typical “windup” response where the
amplitude of the second peak (C-fiber activation) generally
increases with the number of pulses. The injured rat response
is relatively consistent, potentially due to changes in spinal
neuronal circuitry from the injury. This metric provides a
good summary of the responses, but fails to fully capture
the nonlinear dynamics observed during windup.

B. Predicting the windup response using LTI WDR models

Sixteen separate TF models are used to capture the dynam-
ics of the WDR neurons in response to each windup input
pulse. Based on the results of the search grids, the model sets
with the best performance for the naive and the injured rat are
seven zeros and nine poles, and three zeros and seven poles,
respectively. Fig. 4 shows a comparison of the recorded
WDR response and the model response, for the naive and
the injured rat, for a selection of the windup pulses. For
the recorded data, the thin solid line is the mean of the two
windup trials, and the shaded region is the standard deviation.
The darker, thick line is the predicted model response.

Fig. 5 shows the RMSE and MAE between the recorded
WDR responses and the predicted model response, for both
the naive and the injured conditions. Overall, the RMSE
and MAE are small for both the conditions. However, for
the naive models, we observe increased model error as the
number of windup pulses increase, which is due to the
constraint that each model must have the same order.

Also, we observe an interesting trend in the magnitude of
the bode plots for each fitted TF model, which is particularly
clear for the naive condition (Fig. 6). For each pulse, we see
a similar magnitude-frequency response curve. However, we
observe that the magnitude of the response increases with the
number of windup pulses. This is a logical result based on
the recorded responses, which also shows increasing C-fiber
amplitude over the subsequent windup pulses.

C. Comparing WDR models with structured uncertainty

Lastly, for each condition, we build a model with struc-
tured uncertainty from the sets of TF models. The initial
step is to identify the nominal models, GN , for both the
injured and naive rats. As we noted in the previous section,
the set of models produced similar responses, but varied in
magnitude. Therefore, for both sets of models, we chose GN
to be the average over the set of TF models. Fig. 7A shows
the nominal responses (thick dotted lines) compared to the
set of 16 responses (thin lines), for the naive and injured
conditions. For both conditions, the nominal model response
is the mean response across all 16 windup pulse responses.

Overall, the variation (i.e. uncertainty) in the set of naive
models is greater than in the set of injured model. We can
quantify the uncertainty by computing the relative error be-
tween the nominal model and each of the individual models
in the set. Referencing the block diagram in Fig. 1B, we fit a
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Fig. 3. Normalized spike counts for the Aβ and C fibers for both conditions
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Fig. 4. A comparison of the predicted WDR firing rate responses and the
recorded WDR responses for the naive and nerve-injured rat.

Fig. 5. The RMSE and MAE values for all 16 TF model predictions.
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Fig. 6. Bode plots of all 16 fitted transfer function models.

frequency-dependent uncertainty weighting function, W , by
using the maximum relative error at each frequency, over the
16 responses, for both conditions. For this application, we
chose a 5th order weighting function. In Fig. 7B, the dark
thick lines indicate the weighting function, W , and the thin
lines show the relative error between the nominal models
(from Fig. 7A) and each of the 16 TF models in the sets.

By finding where the relative error and the uncertainty
weighting functions is greater than 0dB, we can identify
i) the range of frequencies where the variation is largest
across all models in the set, and ii) specific windup pulse
models that produce the largest variation for a particular
frequency. For example, in the naive model, the greatest
amount of variation, across all pulses, is between 2Hz -
5Hz and 8Hz - 11Hz. Additionally, we find that pulse 1
and pulse 16 varied the most at 4Hz and 10Hz, respectively.
Alternatively, for the injured rat, the largest variation in
responses occurs in frequencies higher than 25Hz, and the
largest high frequency variations are observed in windup
pulses 1, 3, and 8. Overall, using structured uncertainty is a
powerful method for exploring the underlying dynamics of
the DH that cannot be identified using traditional methods.

IV. DISCUSSION

In this paper, we use structured uncertainty to accurately
model and analyze the dynamical nature of windup in the
DH WDR neurons in naive and injured rats. The traditional
analysis presented in Fig. 3 shows a good summary of the
response. However, only after we fit a dynamical model with
structured uncertainty (Fig. 7) are we able to identify the
nonlinear changes in the DH, and be able to predict the
response to novel inputs. The uncertain models developed
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Fig. 7. A) WDR responses for each set of TF models, and the mean
nominal model GN . B) The relative error across the set of models, and the
fitted uncertainty weighting function, W .

in this work demonstrated the feasibility of these methods,
and they will be applied to larger datasets in the future. The
robust PNS controllers will depend on the identified struc-
tured uncertainty (i.e. low uncertainty leads to an aggressive
controller, high uncertainty leads to conservative controller).
We will use µ-synthesis to identify the robust PNS controller
to drive the WDR response to improve CP treatment.
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