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Abstract— We present a new scheme for Alzheimer’s Disease 

(AD) automatic assessment, based on Archimedes spiral, drawn 

on a digitizing tablet. We propose to enrich spiral images 

generated from the raw sequence of pen coordinates with 

dynamic information (pressure, altitude, velocity) represented 

with a semi-global encoding in RGB images. By exploiting 

Transfer Learning, such hybrid images are given as input to a 

deep network for an automatic high-level feature extraction. 

Experiments on 30 AD patients and 45 Healthy Controls (HC) 

showed that the hybrid representations allow a considerable 

improvement of classification performance, compared to those 

obtained on raw spiral images. We reach, with SVM classifiers, 

an accuracy of 79% with pressure, 76% with velocity, and 70.5% 

with altitude. The analysis with PCA of internal features of the 

deep network, showed that dynamic information included in 

images explain a much higher amount of variance compared to 

raw images. Moreover, our study demonstrates the need for a 

semi-global description of dynamic parameters, for a better 

discrimination of AD and HC classes. This description allows 

uncovering specific trends on the dynamics for both classes. 

Finally, combining the decisions of the three SVMs leads to 

81.5% of accuracy. 

 
Clinical Relevance— This work proposes a decision-aid tool 

for detecting AD at an early stage, based on a non-invasive 

simple graphic task, executed on a Wacom digitizer. This task 

can be considered in the battery of usual clinical tests. 

 

I. INTRODUCTION 

Characterizing Alzheimer’s disease (AD) at an early stage 
is a challenge: on one hand, the onset of the disease is 
insidious; on the other hand, the heterogeneity of AD profiles 
is important. 

AD starts by memory impairment and evolves 
progressively into motor deficits. The loss of fine motor skills 
has been investigated in the literature to identify behavioral 
markers of neurodegenerative diseases [1-7]. Digital tablets 
allow collecting handwritten productions as spatiotemporal 
signals (“online” signals), conveying precious dynamic 
information about the writing gesture. The online signal has 
been intensively studied since the 1980s through the analysis 
of fine movements on a digitizer, mostly for Parkinson 
disease (PD), on different tasks with no semantic content, 
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such as drawing Archimedes spiral, concentric circles, or 
moving the stylus as fast as possible between two targets [1-
3]. Later, the same tasks were used for automatic AD 
assessment [4-7].  

All such works extracted global spatiotemporal markers 
(as peak velocity) on segments (strokes), and assessed 
whether there is a significant difference between healthy 
controls (HC) and pathological populations. This assessment 
was based on a statistic on the whole gesture of stroke-based 
features (e.g. its Signal-to-Noise Ratio, the ratio of the mean 
value of each feature and its standard deviation [6]). The 
objective of such pioneering works was to uncover specific 
markers of pathology among handcrafted spatiotemporal 
features, not performing automatic assessment of the disease. 
But some of these works were contradictory on which 
markers were significantly different between healthy and 
pathological populations. Slavin et al. [6] (on loops) and 
Schröter et al. [5] (on superimposed circles) showed that AD 
patients present more variable peak velocity across strokes 
compared to HC. Such strokes are defined as half loops in [6] 
and half circles in [5]. However, Yu et al. [7] did not find 
significant differences in velocity on loops and circles. These 
contradictory results were due to the small size of databases, 
and to the fact that dynamic features were extracted globally, 
first on segments and then on the whole gesture.  

More recently, with the emergence of Deep Learning, 
studies on pathological aging have exploited images of 
graphical handwritten productions with deep networks. Such 
works, devoted to PD [8-12], combined the decisions of 
different classifiers (deep networks or Support Vector 
Machines) to take a decision on the health status of a subject 
(classification). The main contribution of this new trend of 
research is the automatic extraction of features by Deep 
Neural Networks. This contribution is significant: it is indeed 
very difficult to find out the proper set of features through 
classical methods; it requires strong a priori knowledge on the 
problem to design the feature extraction process. It also 
requires performing feature selection, sometimes too costly. 
The work in [13] on PD assessment illustrates well the 
problem of a handcrafted feature extraction: still after a high 
cost sequential feature selection process, several hundreds of 
features are retained.  
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The present work is focused on AD assessment, never 
explored to our knowledge in the recent literature on deep 
learning. Our data, collected at Broca Hospital in Paris with a 
specific protocol involving several graphomotor tasks, 
consists in spirals of 30 AD patients at an early stage, and 45 
HC. As for other works in the literature, the amount of data is 
rather small, and the heterogeneity of profiles in both AD and 
HC classes is high.  

In this study, we propose an original scheme based on a 
hybrid representation of spiral images, combining visual and 
sequential dynamic information of the drawn spirals. This 
approach allows exploiting Transfer Learning, useful in case 
of sparse data, for the automatic extraction of features. 
Indeed, Transfer Learning can cope with the small size of the 
data and extract automatically pertinent high-level features 
[8], based on previous knowledge extracted on thousands of 
images of the ImageNet database [14]. We propose to feed the 
deep network with spiral images generated from raw 
sequences of pen coordinates, and later enriched with 
dynamic information inherited from the online handwritten 
signal. Different types of dynamic information were included 
generating RGB color images: pen pressure, pen inclination 
and pen velocity. Then, one expert, a Support Vector Machine 
(SVM) classifier, is trained on the internal features extracted 
by the deep network on each type of enriched image given as 
input, in order to take a decision on the health status of the 
subject. Our results show the pertinence of exploiting 
Transfer Learning with hybrid representations of spiral 
images: a significant improvement of performance is obtained 
on the enriched spiral images when compared to raw images. 
Furthermore, the fusion of the three experts’ decisions 
improves performance, showing that our strategy allows 
coping with the strong intra-class variability of motor 
behavior observed in both AD and HC populations.  

In our paper, Section 2 presents related works on Transfer 
Learning and deep learning for pathology assessment with 
graphomotor tasks. Section 3 presents the database and 
explains the methods and the experimental setup. Section 4 
states our results and analysis, and finally conclusions and 
perspectives for future work are given in Section 5. 

 

II. RELATED WORKS 

To our knowledge, up to now, there is no work on AD 
assessment exploiting deep learning techniques on 
handwritten graphical tasks. The majority of works in the 
literature on pathology assessment with deep learning are 
focused on PD. Their aim is to detect essential tremor by 
means of graphomotor tasks. 

Two strategies have emerged in the literature on 
graphomotor tasks: on one hand, Transfer Learning is 
exploited only for high-level feature extraction, and the health 
status of the subject is assessed with another classifier; on the 
other hand, deep networks are trained and used as classifiers.  
 

A. Transfer Learning for PD assessment 

Transfer Learning allows exploiting deep neural networks 
that were pre-trained for classification on a given problem, as 
feature extractors or classifiers for another problem [16]. In 

[8], a pre-trained CNN, AlexNet, originally trained on 
ImageNet dataset for a classification task of 1000 classes [14], 
was used as feature extractor for PD assessment. To our 
knowledge, this is the only work in the literature on pathology 
assessment by graphomotor tasks, exploiting Transfer 
Learning. On spiral images and other eight graphomotor 
tasks, [8] showed the potential of Transfer Learning for 
extracting pertinent features from raw images of handwritten 
inputs. For each input image to the network, corresponding to 
one task, features are extracted at fc7 layer (4096 features) and 
later used to train a SVM expert. The architecture combines 
different experts, and three representations of each image are 
considered (raw, median residual, edge) for early fusion (low-
level fusion into a single feature vector). Majority voting is 
used to take the final decision on the eight tasks including the 
spiral. A good performance is reached on the PaHaW 
database [8], when combining the three representations of the 
input data and considering different tasks (letter, bigrams, 
four words and a sentence, plus the spiral). Indeed, with only 
one image representation, combining the predictions of all 
tasks showed rather poor results (at most 68% of accuracy). 
We noted that the spiral task gave the best results among all, 
reaching 76% of accuracy with the three representations 
combined. Unfortunately, only the accuracy value was given 
in [8], making impossible to assess in a refined way the 
obtained performance, in terms of sensitivity and specificity 
measures. 

B. Deep Learning for PD assessment 

Other works have trained and exploited deep networks as 
classifiers. In [10], PD detection is studied on graphomotor 
tasks, among which spirals, acquired with a Biometric Smart 
Pen [9]. The pen captures six time series: fingergrip, axial 
pressure, tilt and acceleration in the three directions. For each 
task, the six time series are converted into a grey-level image, 
where rows are time in milliseconds and columns represent 
the six signal channels. As the length of time sequences may 
differ from one person to another, a normalization of 
sequences was necessary to map time series into an image of 
fixed size. CNNs are used to classify these specific images of 
the time series, using two architectures: ImageNet (5 
convolution layers, 5 pooling layers, 2 normalization layers) 
and a more shallow architecture, CIFAR-10 (3 convolution 
layers and 3 pooling layers). Several baseline classifiers are 
used, showing again that the spiral task alone is among the 
most discriminative, and that the best performance is obtained 
with the CNN-ImageNet architecture (78.26% of accuracy). 
Unfortunately, sensitivity and specificity measures are not 
available for further analysis, maybe because the database is 
very unbalanced (74 PD patients and 18 HC). In spite of this, 
such results point out the capacity of CNNs to extract 
pertinent information for pathology assessment compared to 
other classical methods.  

In [9], the same architectures are compared to other more 
shallow, as LeNet (2 convolution layers and 2 pooling layers), 
on a smaller database of 14 PD patients and 21 HC. With two 
evaluation protocols splitting training and test data (50% for 
training and 50% for testing, versus 75% for training and 25% 
for testing), results show that with the latter protocol, on 
spirals, the CNN-ImageNet gives 80.19% of accuracy, 
CIFAR-10 still remains at a high level of performance 
(78.31%) but LeNet drops at 43.64%. Thus, the deep 
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architecture cannot be too shallow to extract pertinent 
information from the mapped images.  

Finally, Taleb et al. [12] followed the same idea of 
generating images from online handwriting time series, but 
proposed an alternative for this normalization applied on the 
length of time series. On PDmultiMC database of 21 PD 
patients and 21 HC, they used 2D spectrogram images of each 
feature time series. They first studied a CNN with images of 
a fixed size, as in [10], and fused the decisions of different 
experts by a voting approach on 7 tasks (cursive loops, 2 sorts 
of waves, 2 single tasks of one word, name and family name). 
Note that there is no spiral task. They also proposed a CNN 
for feature extraction directly on time series (without 
converting the sequences into images), using one-dimensional 
kernels that move through the raw sequence. The output of 
the CNN, seen as a sequence of vectors, is given as input to a 
dynamic BLSTM for sequence prediction. The same accuracy 
is obtained with both proposals (accuracy of 83.33%) after 
late fusion of all tasks. The CNN approach on spectrogram 
images seems more reliable (sensitivity of 85.71% and 
specificity of 80.95%) than the hybrid CNNs-BLSTM model, 
which gives very unbalanced performance measures: a much 
lower sensitivity of 71.43% while specificity reaches 95.24%, 
showing the difficulty in detecting PD patients.  

It is difficult to compare all the above-mentioned 
approaches on PD assessment, since the datasets used are not 
the same. But, it is clear that pathology assessment with such 
models is feasible. A novel trend in research emerges among 
these studies, exploiting deep learning techniques and 
enriching the input images with raw time series information. 
The contribution of our work is two-fold. First, this is the only 
study addressing AD detection based on deep learning, with a 
single graphomotor task, Archimedes spiral, whose 
effectiveness is proven for pathology assessment [8,10]. 
Second, we adopt a novel strategy based on a hybrid modality 
that consists in embedding directly in spiral images dynamic 
information of the drawing gesture. In this way, both the 
image of the produced spiral and the dynamic process 
associated to its production are simultaneously given as input 
to the deep network for high-level feature extraction.  

 

III. METHODOLOGY AND EXPERIMENTAL SETUP 

A.  Data and acquisition protocol 

Our private dataset was acquired at Broca Hospital in Paris, 
in the framework of ALWRITE project [17-19], a French 
research project on handwriting analysis for AD assessment. 
All participants freely signed a consent form after receiving 
information on the study. The participants were asked to draw 
one Archimedes spiral, among other graphical tasks, on a 
sheet of a paper fixed on a Wacom Intuos Pro Large tablet, 
using an inking pen. Examples of spirals from HC and AD 
patients are displayed in Figures 1 and 2 respectively.  

 

 

            

Figure 1. HC raw spiral images generated from coordinate sequences. 

 

        

Figure 2. AD raw spiral images generated from coordinate sequences. 

 

The tablet captures, with a sampling rate of 125 Hz, five 
temporal functions: pen coordinates (x,y), pen pressure (P), 
Azimuth (Az) and Altitude (Alt) pen inclination angles. It also 
captures the in-air trajectory of the pen (pen-ups) up to 1 cm 
off the tablet surface. 

Our database includes 30 early-stage AD patients and 45 
HC subjects, with a mean age of 80.2 ± 8.8 and 73.5 ± 6.1 
respectively. Each of the 75 participants performed one spiral. 
AD patients were diagnosed based on DSM-5 criteria [15], 
and considered as having an early-stage AD if their MMSE 
was over 20. HC performed neuropsychological tests to 
ensure their cognitive profile is normal. Participants with 
medical problems such as stroke and other neurodegenerative 
diseases were not included. The average MMSE is 22.1 ± 4 
for AD patients and 29 ± 0.98 for HC.  

B. Generating hybrid images: an alternative approach 

We use hybrid images generated from the online sequence 
of pen coordinates produced by each participant. First, we 
generate the image of a spiral as in [8], by exploiting pen 
coordinates information through time. This results in the 
images shown in Figures 1 and 2 when displaying only pen-
down trajectories (when the pen touches the tablet surface).  

Then, we introduce dynamic information directly on the 
spiral, in two different ways: locally (pointwise in the pen 
trajectory), and more globally considering meaningful 
resolution levels after a quantization process. We exploit the 
pen pressure (P) and altitude angle (Alt) captured by the 
digitizer. Also, we extract pen local velocity values since it is 
a good marker for pathology detection [5,17,18]. 

We use K-means clustering to generate K meaningful 
resolution levels (K clusters) of temporal functions, 
considering all the values of the given features for the whole 
population. Each cluster is represented by its mean value, 
following a heat map. Examples of hybrid images with K=3 
pressure levels are given in Figures 3 and 4. In-air trajectories 
are displayed in dotted red points. 

 
Figure 3. AD spiral images. Red points stand for zero pressure values, 

green and purple for medium- and high- pressure levels, respectively.  
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Figure 4. HC spiral images. Red Points stand for zero pressure values, 

green and purple for medium- and high- pressure levels, respectively.  
 

Spiral color images are then fed to AlexNet for automatic 
feature extraction. AlexNet is indeed able to process RGB 
images, and we take advantage of this in a Transfer Learning 
framework, for high-level feature extraction. 

C. Automatic feature extraction and evaluation set-up 

As shown in Figure 5, we consider 4096 features extracted 
at fc7 layer from AlexNet, to perform classification with a 
SVM. Such features were extracted for each type of hybrid 
image given as input to the deep network. According to the 
type of hybrid image, the output feature vector is used to train 
its corresponding SVM expert. We use a RBF kernel to 
manage the high dimension of the feature vector. Since we 
investigate three hybrid representations of spiral images, 
including pressure, altitude and velocity information, we 
build three experts to analyze the effectiveness of each 
representation for AD assessment. 

As we have at disposal one spiral per person, for 45 HC 
and 30 AD patients, we perform 10 random samplings of 30 
HC among the 45 HC, in order to have the same number of 
samples per class when training the SVM classifier. In each 
sampling, the SVM is trained on 20 HC and 20 AD and tested 
on the remaining 10 HC and 10 AD. Average performance is 
given in terms of accuracy, specificity (percentage of HC well 
classified) and sensitivity (percentage of AD patients well 
classified), considering the 10 samplings, along with their 
standard deviations.    

 

 

 

 

 

 

 

Figure 5. System overview of the three AlexNet networks and fusion of 

experts’ decisions.   

 

IV. EXPERIMENTS AND RESULTS 

A. Raw pen-down spiral images vs. in-air hybrid images 

Table I shows the performance of the SVM classifier based 
on the features extracted by AlexNet, when considering raw 
spiral images generated from the online sequence considering 
only pen-down trajectories, and also spiral images with in-air 
trajectories. Note that in the literature, only raw spiral images 
are usually fed to AlexNet for automatic feature extraction 
[8]. 

With raw spiral images, sensitivity and specificity values 
are very unbalanced, revealing numerous false negatives. 
When considering pen-ups on such spiral images, the 
sensitivity shows an absolute improvement of 11% at the 
price of a lower specificity. The accuracy is thus slightly 
improved compared to the raw images, reaching 72%, but the 
standard deviation is decreased. 

TABLE I.  PERFORMANCE ON RAW SPIRAL IMAGES AND SPIRAL 

IMAGES WITH IN-AIR TRAJECTORY INFORMATION 

Performance Sensitivity Specificity Accuracy 

Raw spiral (Baseline)  50 ± 19.5 88 ± 6 69 ± 8.8 

Raw spiral with pen-ups 61 ± 11.3 83 ± 12.6 72 ± 6.4 

 

In the following, we propose to introduce, additionally to 
pen-ups, pressure information on pen-down trajectories, 
pointwise and later at different resolution levels (after a 
quantization process, as explained in Section III.B). In the 
same way, we also exploit altitude and velocity information. 

B. Pressure-based hybrid images 

For pressure-based hybrid images (Figures 3 and 4),     
Table II shows the considerable improvement of classifier 
performance, obtained on images containing pressure values 
taken pointwise, comparatively to raw images. The sensitivity 
is improved in average from 50% (raw image) to 68%, and 
the standard deviation obtained on the 10 samplings is 
decreased from 19.5 to 12.4. Compared to raw spirals with 
pen-ups (Table I), the accuracy values are in the same range; 
however, the sensitivity and specificity are more balanced.  

TABLE II.   PERFORMANCE ON PRESSURE-BASED HYBRID IMAGES.  

 

Then, we studied different configurations for quantizing 
pressure values, from 3 to 5 pressure levels. As shown in 
Table II, the best result was obtained when considering zero 
pressure values apart and performing quantization on two 
levels on pen-downs (case of Pressure P=0 & K=2 levels). We 
obtain in this case a significant improvement of all 
performance measures, reaching 79% of accuracy with a good 
balance between specificity (83%) and sensitivity (75%). 

To better assess the impact of quantization on the 
classification process, in Figure 6, we display for each class 
the percentage of points in spiral drawings that are assigned 
to each cluster.  

When considering the best resolution for discriminating 
between the two populations (P=0 & K=2), we notice that 
more than half of the points in spiral drawings of HC show 
high pressure values, while most of the points in spiral 
drawings of AD patients (65.7%) show low pressure values. 

Performance Sensitivity Specificity Accuracy 

Baseline: Raw spiral  50 ± 19.5 88 ± 6 69 ± 8.8 

Pointwise pressure values 68 ± 12.4 74 ± 11.2 71 ± 7.2 

Pressure P=0 & K=2 levels 75 ± 10.2 83 ± 11 79 ± 8.8 

K=3 levels 62 ±10.7 82 ± 8.7 72 ± 7.1 

Pressure P=0 & K=4 levels 70 ± 12.6 81 ± 11.3 75.5 ± 6.1 

K=5 levels 62 ± 14.7 72 ± 18.8 67 ± 12.1 
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Higher quantization resolutions, as reported in Figures 6.c and 
6.d, confirm the lower discrimination capacity of the system 
between HC and AD. 

 

Figure 6. Pressure distribution of AD and HC across clusters for: (a) P=0 

& K=2, (b) K=3, (c) P=0 & K=4, and (d) K=5. 

 

C. Altitude-based images 

Altitude hybrid images lead to similar accuracy values with 
those of raw spiral images (see Table III), but still improve 
sensitivity considerably. When comparing different 
quantization resolutions of altitude values, we notice that the 
case of three resolution levels of altitude (K=3 levels) leads to 
a good balance between specificity and sensitivity, with even 
lower standard deviation on the 10 samplings of the HC.   

TABLE III.  PERFORMANCE ON ALTITUDE-BASED HYBRID IMAGES 

 

               
Figure 7. Altitude distribution of AD and HC across K= 3 clusters. 

 

This result is very interesting since the altitude parameter 
is not widely exploited in the literature for pathology 
detection. This finding is in accordance with our previous 
work on AD detection based on online signatures [19]. 
Indeed, the case in Figure 7 (K=3 levels) shows that AD 
patients have a tendency to produce spirals with the lowest 
altitude values, while HC show the opposite trend. This result 

may reveal that AD patients tend to have less tonus on their 
way of holding the pen, compared to control elderly subjects, 
as found on online signatures in [19]. 

D. Velocity-based images 

Table IV shows that velocity hybrid images provide 
significant improvement of performance compared to raw 
spiral images, especially in terms of sensitivity, whatever the 
quantization resolution. However, we notice that a pointwise 
description of velocity leads to poor sensitivity compared to 
the cases using a semi-global description of such parameter 
thanks to quantization (K=3 and K=5). 

Moreover, we notice a considerable decrease of the 
standard deviation in sensitivity for K=5 compared to raw 
spiral images (from 19.5 to 8.7). In this case, an absolute 
improvement of 22% in sensitivity and of 7% in accuracy are 
observed, compared to raw spiral images. 

TABLE IV.  PERFORMANCE ON VELOCITY-BASED HYBRID IMAGES 

 

Figure 8 shows that AD patients exhibit very low velocity 
values. Indeed, 48% of the points in spiral drawings of AD 
patients are produced with very low velocity values, while 
only 30% of the points in spirals drawn by HC have the lowest 
velocity. Besides, Figure 8 also shows that HC tend to exhibit 
higher velocity values. This result confirms a slower motion 
trend in AD since the early stage of the disease, when drawing 
the spiral. 

              
Figure 8. Velocity distribution of AD and HC across K=5 clusters. 

 

E. Fusion of expert’s decisions 

As shown in Figure 5, we combine the decisions of the 
three best experts, assessed in sections IV.B, IV.C and IV.D, 
in order to take a final decision with a major voting scheme. 
These three experts exploit hybrid images containing different 
information, which might be complementary, leading to a 
more reliable AD detection.  

Table V reports the results of the best configuration for 
each type of hybrid image and the late fusion of the three 
experts. Compared to raw spiral images (Table I), we notice 
an absolute improvement of 12.5% in accuracy and of 29% in 

Performance Sensitivity Specificity Accuracy 

Baseline: Raw spiral 50 ± 19.5 88 ± 6 69 ± 8.8 

Pointwise altitude 
values 

83 ± 10 62 ± 21.8 72.5 ± 12.9 

K=3 levels 65 ± 12.8 76 ± 12.8 70.5 ± 8.2 

K=5 levels 65 ± 12 71 ± 19.2 68 ± 12.1 

Performance Sensitivity Specificity Accuracy 

Baseline: Raw spiral 50 ± 19.5 88 ± 6 69 ± 8.8 

Pointwise velocity 

values 
65 ± 10.2 85 ± 10.2 75 ± 7.1 

K=3 levels 74 ± 10.2 78 ± 12.5 76 ± 7 

K=5 levels 72 ± 8.7 80 ± 10 76 ± 5.8 

 

 

    
        (a)                                         (b) 

   
        (c)                                         (d) 

3827



  

sensitivity, while specificity is maintained. Besides, the 
standard deviation in sensitivity decreases from 19.5 to 9.4, 
when fusing the three experts’ decisions. The standard 
deviation of the accuracy also decreases from 8.8 to 5.5. 

TABLE V.  PERFORMANCE OF THE THREE BEST EXPERTS AND THEIR 

FUSION 

 Performance Sensitivity Specificity Accuracy 

Expert 1 (Pressure)  
Pressure P=0 & K=2 levels 

75 ± 10.2 83 ± 11 79 ± 8.8 

Expert 2 (Altitude) 
K=3 levels 

65 ± 12.8 76 ± 12.8 70.5 ± 8.2 

Expert 3 (velocity) 
K=5 levels 

72 ± 8.7 80 ± 10 76 ± 5.8 

Fusion of the three experts  79 ± 9.4 84 ± 6.6 81.5 ± 5.5 

 
When comparing fusion results to those of each expert 

separately (Table V), we notice that our fusion scheme is 
more reliable in terms of average performance on one hand, 
for both sensitivity and specificity, and on the other hand in 
terms of standard deviation across the 10 samplings of the HC 
population.  

 

F. Analysis of internal high-level features with PCA 

We performed a Principal Component Analysis (PCA) on 
the 4096 features extracted by AlexNet on raw images and 
each type of hybrid image considered in Table V. This 
analysis helps understanding which dynamic information 
better describes a given class, in terms of reduced intra-class 
heterogeneity.  

Figures 9 and 10 show, respectively for HC and AD 
classes, the percentage of variance explained as a function of 
the retained principal components (PC). 

 

 

 

 

 

 

 

 

 Figure 9. Percentage of variance explained with PCA as a function of the 

retained principal components (PC) for the HC population. 

 

Figure 9 shows that images including dynamic information 
explain a much higher amount of variance compared to raw 
images. Indeed, in HC class, with velocity and pressure, we 
reach 91,47% and 91.15% of variance explained respectively, 
with two and three components. At the opposite, with raw 
images, eight components are required to reach 91.07% of 
variance explained. We also notice that velocity and pressure 
better characterize the HC population, compared to altitude, 
which requires five components to explain 91% of the 
variance. 

Figure 10 shows that pressure information characterizes 
better the AD population than other dynamic information 
(altitude and velocity). Indeed, with pressure images, only 
three components are required to reach 91.68% of variance 
explained, while four components are needed to reach 90.52% 
of variance explained with raw images. Also, interestingly, 
we notice that the AD population shows more heterogeneity 
when described by altitude and velocity hybrid images.  

 

Figure 10. Percentage of variance explained with PCA as a function of 

the retained principal components (PC) for the AD population. 

 

Finally, pressure information seems to be a good dynamic 
feature for characterizing both HC and AD classes. Indeed, 
only one principal component is sufficient to explain 84% of 
the variance in the AD class and 86% of the variance in the 
HC class. 

 

V. CONCLUSION AND PERSPECTIVES 

The present study proposes a novel scheme for the 
automatic assessment of early-stage AD, based on 
Archimedes spiral. It exploits Transfer Learning for feature 
extraction using hybrid spiral images. Such images are 
generated from the online sequences captured by a digitizer, 
and enriched with dynamic information displayed in RGB at 
different resolution levels. Three types of hybrid images are 
considered: images including pressure, altitude and velocity. 

Experiments have shown that these hybrid representations 
of spiral images allow a considerable improvement of 
performance compared to raw spiral images. In the case of 
pressure-based hybrid images, when considering the pen-ups 
in the trajectory and two levels of pen pressure values on pen-
downs, we reach 79% of accuracy (sensitivity = 75% and 
specificity= 83%) with a SVM classifier. This result confirms 
the necessity of a semi-global description of pressure instead 
of a local pointwise encoding, to discriminate AD and HC 
classes. Actually, this level of description is well suited to 
uncover that the AD population shows a trend of rather low-
pressure values, while the HC one tends to show the opposite 
trend. Furthermore, the semi-global description of pressure 
reduces significantly the important heterogeneity of each 
class.  

When considering hybrid images with three pen altitude 
levels, the obtained accuracy is comparable to that of raw 
spiral images, but the sensitivity improves considerably, for 
all quantization resolutions. We reach with a SVM classifier 
70.5% of accuracy, 65% of sensitivity and 76% of specificity. 
Our analysis also reveals a trend of rather low altitude values 
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in the AD population. This result reflects their lower tonus 
when holding the pen comparatively to HC, which is in 
accordance with the above-mentioned finding of lower 
pressure values in AD patients. The same relative behavior 
between pressure and altitude was indeed observed in AD 
patients when signing [19]. 

Regarding hybrid images with five velocity levels, 
performance also improves considerably compared to raw 
spiral images. Indeed, we reach in this case 76% of accuracy, 
72% of sensitivity and 80% of specificity. Compared to raw 
images on which a sensitivity of 50% is obtained with a high 
standard deviation (19.5) on the 10 samplings of HC, 
including velocity information leads to better performance 
with a considerable reduction of the standard deviation (8.7). 
Again, a semi-global encoding of velocity into five levels 
uncovers a trend of lower velocity values in AD population 
compared to HC, which also show low velocity values due to 
normal aging. 

Finally, combining the decisions of the three experts leads 
to the best accuracy value (81.5%) with a good balance of 
sensitivity (79%) and specificity (84%). Also, fusion allows 
decreasing globally the standard deviation on performance 
measures, due to random samplings of HC. 

The analysis of high-level internal features with PCA 
showed that dynamic information included in images explain 
a much higher amount of variance compared to raw images, 
for the healthy population. For the AD population instead, 
pressure is the only dynamic information that explains a 
higher amount of variance compared to raw images. This 
result shows the pertinence of pressure information in 
characterizing both HC and AD classes through hybrid 
images. 

The majority of studies in the literature on deep learning 
for pathology detection have focused on PD assessment. They 
combined different handwritten tasks and different 
representations of the same original images, on one hand after 
applying classical image processing transformations, as in [8], 
on the other hand by generating images with no visual 
information of the drawing tasks [9-12]. Our work proposes 
to exploit only one task for AD assessment and to enrich the 
input images in RGB with dynamic information represented 
with a semi-global encoding. This new scheme takes 
advantage simultaneously of both visual and dynamic 
information. 

In the future, we aim at studying other dynamic features 
such as acceleration and jerk, as well as other graphical tasks 
available in our database. We will also go further in the 
analysis of the internal high-level representations represented 
by the extracted features for a better understanding of the 
decisions taken by the classifiers. We will also study other 
architectures than AlexNet for feature extraction. 
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