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Abstract—In this paper, a non-parametric model of the
neuromusculoskeletal system for the biceps brachii is presented.
The model serves to generate angular paths for the control of
a virtual active orthosis. The path generator uses a differential
neural network (DNN) identifier that obtains the reference
angular position and velocities using the raw electromyographic
(EMG) signals as input. The model is validated using experi-
mental data. The training and closed-loop implementation of
the proposed model are described. The control strategy ensures
that the user reaches a set-point with a predefined position
constraint and that the device follows the natural reference
path that corresponds to the raw EMG signal.

Index Terms—Neuromusculoskeletal model, Differential Neu-
ral Networks, Upper-limb rehabilitation, Virtual prototype

I. INTRODUCTION

Over the last decades, the mechanics of the neuromus-
culoskeletal human system have been characterized exten-
sively to correlate muscle activity with various dynamical
and kinematic behaviors [1]. Previous works have studied
the implementation of mathematical mappings, from which
it is important to highlight Hill-based models to obtain
angular positions of a given muscle of interest. However,
the vast number of unknown parameters that must be tuned
in a non-adaptive manner and patient variability makes the
implementation for a given individual an arduous task [2].

Artificial neural networks (ANNs) have shown an out-
standing ability to approximate any continuous nonlinear
functions locally. With this in mind, we establish the imple-
mentation of a differential neural network (DNN) to obtain a
valid approximate mapping from electromyography (EMG)
signals to angular position and velocity of a joint of interest.
Though ANNs have been explored previously [3], this work
focuses on the accurate mapping of both angular trajectory
and velocity with one EMG signal rather than multiple.

Once angular trajectories are provided from this model,
there are multiple applications that can take advantage of it,
such as active orthotic devices. Many diseases and injuries
can impair joint mobility compared with normal reference
values [4]. Therefore, the design of such device should con-
sider trajectory restraints. Furthermore, volitional behavior
during rehabilitation contributes to treatment effectiveness
with respect to passive roles [5]. In order to address this
factor, a trajectory compensator was added only when the
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individual could not exert enough force to achieve the desired
angle.

Based on the aforementioned, a validated neuromuscu-
loskeletal model to obtain the angular position and velocity of
a determinate articulation using raw EMG signals is proposed
here. The model is based on a differential neural network
identifier, and the learning laws for the parameter estimation
are based on Lyapunov theory ensuring the ultimate bound-
edness of the error between the estimated parameters and
the actual approximation parameters. The data collection,
training, validation, and test implementation for the DNN
musculoskeletal model are described. In addition, the design
of the controller ensures the fulfillment of predefined restric-
tions. The restrictions limit the orthosis trajectories in a fixed
angular range.

II. PROBLEM STATEMENT

A valid model to map the raw EMG signal to the angular
position of a particular joint is needed. This can be expressed
as the estimation of the unknown dynamics hi : R2 × R for
żi(t) = hi(zi(t), ui(t)), where the state vector zi ∈ R2

represents the angle position and angular velocity of the i-
th joint, and ui(t) is the raw EMG signal from the agonist
muscle. To solve this stage, a non-parametric identifier can
be used, in this way the state yi ∈ R2 represents the angular
position and velocity mapped from the raw EMG signal of the
i-th agonist muscle. Such identifier ensures the convergence
to the origin or at least to a zone near the origin of the
identification error ∆i = yi − zi.

In the second stage, we obtain the virtualization of the
active orthosis device. This is solved using the CAD model
of the real orthosis. The dynamics to obtain the position for
all the degrees of freedom (DoF) q and the velocity q̇ from
an input torque τ can be used for the numerical tests. For
the upper-limb orthosis, five DoF were considered, thus, the
sub-index i represents each decentralized subsystem for the
i-th available movement of the device i = {1, 5}.

Considering the path generator from the neuromuscu-
loskeletal model given by the trained identifier, the following
issue resides in the design of a hybrid trajectory x∗i : R+ →
R2, such that the descentralized states of the virtual orthosis
xi = [qi, q̇i]

> reach a set constant point x+
i ∈ R, taking into

account the path given by zi. To achieve this, the following
set of desired reference trajectories has been proposed

x∗i (t) =

{
yi(t) if Ai,

yi(t) + zi,s(t) if Bi,
(1)

where Ai = |y2,i| ≥ αi or t ≤ tB , Bi = |y2,i| <
αi and |x+

i −y1,i| ≥ βi and t > tB , with αi ∈ R+, βi ∈ R+,
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tB ∈ R+, tB > t0 and zi,s : R+ → R2 is a function with
sigmoidal signals to complete the path.

The last step requires the design of the control algorithm
to solve the trajectory tracking for the virtual orthosis. The
aim of the controller is to drive the states of the orthosis
xi = [qi, q̇i]

> to the desired reference x∗i ∈ R2, such that,

lim
t→∞

‖ei‖2 ≤ ηi, ηi ∈ R+, (2)

where ei = xi − x∗i defines the tracking error of the virtual
orthosis device (VOD) but subject to the following set of
position constraints ‖qi − x+

i ‖ > ψi, ∀x+
i ∈ ∂Θi where

ψi ∈ R+\{0} defines a safety factor to avoid the trans-
gression of the position constraints and ∂Θi describes the
boundary of the working space in the i-th joint of the VOD
that should be established according to the anthropometric
ranges.

III. ANN NEUROMUSCULOSKELETAL MODEL

Based on the models described in the literature to represent
the neuromusculoskeletal systems [6, 7], the following ODE
in a general form represents such dynamics.

żi(t) = hi(zi(t), ui(t)) = fi(z(t)) + gi(zi(t))ui(t),
zi(0) = z0,i,

(3)

where zi ∈ R2, zi = [θi, θ̇i]
>, θi is the angular joint

position, θ̇i is the angular velocity, ui ∈ R is the raw EMG
signal, fi : R2 → R2 is a nonlinear continuous function,
gi : R2 → R2 is a nonlinear continuous function associated
with the input, and z0,i are the initial conditions. Notice that
this model represents the contribution of a single raw EMG
signal, however more signals can be included. Considering
the nature of the system and the input-output signals, the
input raw EMG signal and the output signal, position and
velocity of a determinate articulation are bounded such that

u2
i (t) ≤ u+

i < +∞, ‖zi‖2 ≤ z+
i < +∞, ∀t ∈ R+, (4)

we use the model to represent the contribution of the EMG
signal obtained from the Biceps Brachii to regulate elbow
flexion and extension.
A. Neural Network Representation

For (3), taking into account the approximation properties
of ANNs [8–11], the ANN representation is

żi(t) = Aizi(t) + φ1,iψ1,i(zi(t))
+φ2,iψ2,i(zi(t)) + νi(zi(t)),

(5)

where Ai ∈ R2×2 is a Hurwitz matrix, φ1,i ∈ R2×p

and φ2,i ∈ R2×q are the weights of the ANN structure,
ψ1,i : R2 → Rp and ψ2,i : R2 → Rq are vectors with the
activation functions and νi : R2 → R2 represents the approx-
imation error which is bounded based on the approximation
theorem based on the sigmoid functions superposition [9],
i.e,

‖νi‖2 ≤ ν+
0,i + ν+

1,iu
+
i , ∀t ∈ R+, (6)

where ν+
0,i and ν+

1,i are positive constants. Sigmoids are the
class of activation functions for this ANN representation,
each element in ψ1,i and ψ2,i obeys the following function,

(ψj,i)k (z) =
(

1 + e−(b>ijkz+cijk)
)−1

, (7)

where bijk ∈ R2 and cijk ∈ R are the sigmoid free-
parameters for the k-th element of the j-th array in the
approximation for the i-th articulation, i = {1, 5}, j = {1, 2}
and k = {1, p} when j = 1 and k = {1, q} when j = 2.

The following assumptions are considered for the design
of the DNN identifier.

Assumption 1. Based on the form of the activation functions
(7), which satisfy the sector condition [12], the following
inequalities hold, ‖ψj,i(za)‖2Zj,i

≤ ‖za‖2Cj,i
, ‖ψj,i(za) −

ψj,i(zb)‖2Λj,i
≤ ‖za − zb‖2Dj,i

.

Assumption 2. The weights fitting the approximation
are unknown but are bounded in the following sense.
φj,iΛφj,i

φ>j,i ≤ Φj,i, where Φj,i = Φ>j,i ∈ R2×2 and Λφj,i

are positive definite matrix of proper dimensions.

B. Differential Neural Network Identifier

The proposed identifier consists of a classical DNN as the
described in [12], Chapter 2.

ẏi(t) = Aiyi(t) + φ
1,i

(t)ψ1,i(yi(t)) + φ
2,i

(t)ψ2,i(yi(t)),

φ̇
1,i

(t) = −K1,iPi∆iψ
>
1,i(yi(t)),

φ̇
2,i

(t) = −K2,iPi∆iψ
>
2,i(yi(t))ui(t),

(8)
where yi ∈ R2 represents the state of the identifier,
φ

1,i
: R+ → R2×p and φ

2,i
: R+ → R2×q are the adaptive

weights, ∆i = yi − zi is the identification error, and
K1,i ∈ R2×2, K2,i ∈ R2×2 and Pi ∈ R2×2 are positive
definite matrices.

Theorem 1. [12] Consider the uncertain system (3) rep-
resented by (5), and considering (4), (6), Assumption 1
and Assumption 2. If the identifier with adaptive weights
(8) has K1,i ∈ R2×2 and K2,i ∈ R2×2 positive definite
and Pi is the solution of the following matrix Riccati
equation [13], PiAi + A>i Pi + PiRiPi + Qi = 0 where
Qi = Q0,i + D1,i + D2,iu

+
i , Ri = Φ1,i + Φ1,2 + 2ΥiI2,

Υi ∈ R+\{0} and Q0,i = Q>0,i ∈ R2×2 is a positive definite
matrix. Then, the weights dynamics are bounded and the
identification process is asymptotically consistent.

C. Training and Validation of the proposed DNN Identifier

For this study, the model represents the system mapping
the raw EMG signal, measured from the Biceps Brachii
muscle to the angular position in the flexion and extension
movement of the elbow. In general, other muscles and
articulations follow the same procedure, however here we
restrict the identification for the elbow.

1) Data collection: A three-dimensional (3D) printed ana-
log goniometer was used to obtain the angular trajectory,
the angle/voltage relationship was trained with an `1 + `2
regression, while a single MyoWare™ sensor positioned on
the Biceps brachii muscle operating at 3.3 Volts was used
to obtain the EMG signals. Both sensors were connected to
an Arduino Uno® clocked at 9600 bauds, and interfaced with
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Python via UART. The data was then cut into equal segments
(without any additional preprocessing steps) and stored in a
comma-separated value file to be later exported to Matlab-
Simulink® and used to train the DNN.

To obtain homogeneous signals, the following protocol was
proposed: Initiate at a standing position with the arm fully
extended, forming a 180 degree angle between the humerus
and the radius (0s to 15s), begin first flexion (15s to 25s), rest
(25s to 40s), execute first extension, return to initial condition
(40s to 50s), rest (50s to 65s), begin second flexion (65s to
75s), rest (75s to 90s), begin second extension, returning to
initial condition (90s to 100s), rest (100s to 115s).

Notice that the proposed 3D printed goniometer provides
only the angular position (θi) of the i-th upper-limb articula-
tion. Nevertheless, this device does not provide the angular
velocity (θ̇i) since does not includes velocity sensors in
its electronic instrumentation, as a consequence the angular
velocity is not available online. Therefore, to obtain the
complete state zi it is necessary to implement an algorithm
to estimate angular velocity. The velocity estimation problem
has been solved by using the so-called state observers.
However, most of them offered only asymptotic convergence
that does not match with the DNN training requirements.
Therefore, the estimation of θ̇i requires the application of a
finite-time observer. One of the most remarkable observer
based on the sliding-mode theory is the Super Twisting
algorithm (STA), that can be used like state estimator and
robust differentiator [14, 15]. In this paper, the STA is
proposed as robust differentiator considering the following
description. Let υ1i = θi where θi ∈ R is the signal to be
differentiated and defining υ2i(t) = θ̇i(t), taking into account
that |θ̈i| ≤ θ+

i , it is possible to obtain the following auxiliary
equation υ̇1i(t) = υ2i(t), υ̇2i(t) = θ̈i(t). The STA to obtain
the derivative of θi takes the following form,

dυ̂1i(t)

dt
= υ̂2i(t)− µ1i|∆υi(t)|0.5sign(∆υi(t)),

dυ̂2i(t)

dt
= −µ2isign(∆υi(t)),

where µ1i ∈ R+\{0} and µ2i ∈ R+\{0} are the STA gains,
the observation error is defined by ∆υi(t) = υ̂1i(t)− υ1i(t).

The output of the differentiator is given by
dυ̂1i(t)

dt
with

i = {1, 5} describing the i-th upper-limb articulation [15].
2) Training Stage: The proposed model based on a DNN

identifier has adaptive laws to obtain the estimation of the
unknown parameters (8). However, other free parameters in
this DNN structure can be tuned to obtain better results, here
we used an additional stage denoted as training, using an
early stopping like algorithm to modify the initial parameters,
the criterion used is the integral of the identification error
norm.

IV. VIRTUAL MODEL OF THE ORTHOSIS DEVICE

The orthosis device considered in this work is a modifica-
tion of the device presented by Merchant et al. [16]. Here, it
should be noticed that the considered device was integrated
by four main segments that are: hand, forearm, shoulder,

and shoulder pad (see Figure 1) each of them designed
taking into account the anthropometric dimensions presented
in [16]. Figure 1 provides an isometric view of the orthosis
model obtained from a computer-assisted (CAD) draw design
made with the software Solidworks. The orthotic device is
integrated by five DoF denoted by qi with i = {1, 5},
all of them distributed around the three main anatomical
upper-limb joints, that is, two DoF in the Scapulohumeral
articulation (q5 and q4), one in the elbow articulation (q3)
and two Radiocarpal articulation (q2 and q1). To obtain the
virtual model used in this manuscript, the orthotic CAD
model from SolidWorks® was exported to an XML file. Then,
using the Simscape toolbox was imported to the Matlab-
Simulink® environment. The use of the Simscape® toolbox
gives a virtual model of the orthotic system in which it is
possible to implement different identification algorithms and
control schemes in the Matlab-Simulink® environment.

Fig. 1. Segments of upper-limb VOD.

V. ELECTROMYOGRAPHIC CONTROL ALGORITHM

Introduce the following second order differential equation
that represents in a general form the VOD dynamic model.

q̈(t) = F (q(t), q̇(t)) + Γ(q(t))τ(t) + χ(q(t), q̇(t)), (9)

where q ∈ R5, q̇ ∈ R5 and q̈ ∈ R5 represent the vectors of
joint positions, velocities and accelerations of the upper-limb
orthosis device, respectively. The drift term F : R5 × R5 →
R5 gathers all the terms associated with gravitational effects
and the components of Coriolis matrix for the orthosis device.
The following assumption is assumed to be valid for the drift
term.

Assumption 3. The drift term F is uncertain but satisfies the
following upper bound ‖F (q(t), q̇(t))‖2 ≤ f0 + f1‖x(t)‖2,
where f0 ∈ R+\{0} and f1 ∈ R+\{0} and x ∈ R5 is the
vector defined such that x =

[
q q̇

]>
.

In (9), the matrix Γ : R5× → R5×5 represents the state
depended matrix that characterizes the control input defined
by τ ∈ R5. This work assumes that Γ is bounded satisfying

Assumption 4. The matrix Γ is unknown but bounded by two
positive constants γ− and γ+ such that 0 < γ− ≤ ‖Γ(q)‖ ≤
γ+ <∞ ∀q ∈ R5.
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The nonlinear function χ : R5×R5 → R5 in (9), represents
the internal uncertainties and external perturbations acting
over the orthotic device. Here, the function χ satisfies

Assumption 5. The nonlinear function is unknown but
admits the following upper bound, ‖χ(q, q̇)‖2 ≤ χ+

0 +
χ+

1 ‖x(t)‖2, with χ+
0 and χ+

2 being positive constants.

A. State variables representation and system decomposition

Consider the dynamic model given in (9) that describes
a fully actuated upper-limb orthosis device with five DoF.
By using the state variables theory and defining the state
variables x1,i = qi and x2,i = q̇i with i = {1, 5} the system
given in (9) can be represented as a system decomposition
described by a set of five second order subsystems satisfying
the following equation [17, 18].

ẋ1,i = x1,i,

ẋ2,i = Fi(xi(t)) + Γi(x1,i(t))τ(t) + χi(xi(t)) +
5∑
j=1

Γi,jτj .

(10)
where x1,i and x2,i describe the i−th states of the system.

B. Sliding mode control for the virtual orthosis device

The trajectory tracking control between the states of the
VOD and the set of the desire references trajectory can be
solved by several control schemes. Nevertheless, most of the
classics control schemes does not consider the fulfillment of
position constraints.

Here, it should be noticed that in the rehabilitation field the
consideration of the angular constraints can provide several
advantages in the rehabilitation process of the patient, being
one of the most relevant to avoid possible injury due to the
overshot effect in the orthotic rehabilitation system.

To this end, the current work proposes a state feedback
controller based on the sliding mode theory that considers
in its structure the inclusion of some mathematical terms
to ensure the fulfillment of the position constraints in the
VOD. Taking into account the system decomposition given
in (10) and considering the tracking error of each joint
that integrates the VOD defined in (2) with ei defined
such that ei =

[
e1,i e2,i

]>
. The first step to define the

control law is to introduce the sliding surface σi given by
σi(t) = e2,i(t)γi + e1,i(t) where γi is a positive constant.
To satisfy the control problem presented in (2) the following
control structure has been proposed.

τi(t) = −ki(t)sign(σi(t)), (11)

where the control gain ki satisfies the following structure

ki(t) = Γ−1
i (x1,i)γ

−1
i

(
ri
ιi(t)

+ ρi

)
, (12)

with ri being a positive constant that regulates the conver-
gence velocity of each joint of the virtual device. The time
varying function ιi has the role of an adaptive gain increasing
the control gain each time that the trajectories of the orthotic

device approach the predefined constraints. The adaptive gain
ιi satisfy the following structure

ιi(t) =
infx+

i ∈∂Θi
{d(qi, x

+
i )}2

infx+
i ∈∂Θi

{d(qi, x
+
i )}2 + ε

,

with ε ∈ R+\{0} being a small positive constant and
the function infx+

i ∈∂Θi
{d(qi, x

+
i )}2 describing the smallest

distance between the set of predefined position constraints
and the trajectory performed by the VOD in the i-th joint. In
(12), the parameter ρi represents a nonlinear compensation
satisfying ρi = |γ−1

i |(
√
f0,i +

√
f1,i‖ei‖) + |e2,i|.

Theorem 2. Consider the system decomposition given in
(10) subject to the constraints in closed-loop with the control
law (11). If there exist a positive constant γi such that the
gain ρi is positive, and a small positive constant ε such that
0 < ιi < 1. Then the positiveness of the control gain ki is
guaranteed and as a consequence the tracking error reaches
the sliding surface σi(t) = 0 in a finite time T ∗i defined by

T ∗i = |σi|
(

2 min
t∈R+

{
ri
ιi(t)

})−0.5

.

Proof. The proof is omitted due to the limited space, a
similar approach can be consulted in [19].

To summarize the control algorithm implementation over
the VOD, Figure 2 shows a detail implementation diagram
to verify the interaction between all sections previously
described. In this figure it is clear how the DNN identifier
interacts with the proposed control algorithm to ensure the
VOD closed-loop system.

Fig. 2. Control diagram of VOD.

VI. NUMERICAL SIMULATIONS

The proposed DNN structure (8) considered four neurons
for each ψi,j array, thus p = q = 4. The initial condition for
the states of the DNN were fixed as y3(t0) = [0, 0]>. Table
I shows the change in the identification error with respect
to the number of epochs. Figure 3 shows the identification

TABLE I
INTEGRAL OF THE IDENTIFICATION ERROR IN THE DNN TRAINING

STAGE.

Epochs 1 4 6 8 10∫ tf

t0

|∆i|dt 109.02 108.43 108.32 108.28 108.27

results once the initial conditions and free-parameters were
fixed after the training stage. The first graph (a) shows the
EMG input signal, the second and third subfigures (b and c)
depict the comparison between the actual data and the DNN
states, position and velocity respectively.
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Fig. 3. (a) EMG signal used to train DNN (b) DNN angular trajectory
prediction after testing vs real angular trajectory (c) DNN angular velocity
prediction after testing vs real angular velocity.

In Figure 4, the results after the implementation of the
control strategy using the Sliding Mode control with restric-
tions and the path generator given by the DNN model and
the modify trajectory (1) are depicted. The function z3,s(t)
consists in the addition of two sigmoid functions one positive
and one negative, considering the final point given by the
steady trajectory y3 and the fixed point x+

3 ≈ 100.

Fig. 4. (a) Angular velocity predicted by DNN. (b) Angular trajectory pre-
dicted by DNN, complemented by barrier restrictions and hybrid trajectory.

VII. CONCLUSION

In this work, a neuromusculoskeletal model based on
DNNs was presented. The model served as a path generator
using raw EMG signals from the Biceps Brachii muscle to
regulate a virtual model of an active orthotic device for the
upper limb. The validated model was the outcome of the
adaptive adjustment parameters or weights and additional
training (Algorithm 1) of the proposed DNN identifier. The
ANN model, along with the proposed control scheme, en-
sured that the user reaches a fixed point in the angular range
without getting out of the natural path given by the muscle
signals in the transient stages.

REFERENCES

[1] Yasuharu Koike and Mitsuo Kawato. Estimation of dy-
namic joint torques and trajectory formation from surface
electromyography signals using a neural network model. Bi-
ological cybernetics, 73(4):291–300, 1995.

[2] James WL Pau, Shane SQ Xie, and Andrew J Pullan. Neuro-
muscular interfacing: Establishing an EMG-driven model for

the human elbow joint. IEEE Transactions on biomedical
engineering, 59(9):2586–2593, 2012.

[3] Suncheol Kwon and Jung Kim. Real-time upper limb motion
estimation from surface electromyography and joint angu-
lar velocities using an artificial neural network for human–
machine cooperation. IEEE transactions on Information Tech-
nology in Biomedicine, 15(4):522–530, 2011.

[4] JM Soucie, C Wang, A Forsyth, S Funk, M Denny, KE Roach,
D Boone, and Hemophilia Treatment Center Network. Range
of motion measurements: reference values and a database for
comparison studies. Haemophilia, 17(3):500–507, 2011.

[5] John Whyte, Marcel P Dijkers, Tessa Hart, Jarrad H Van Stan,
Andrew Packel, Lyn S Turkstra, Jeanne M Zanca, Christine
Chen, and Mary Ferraro. The importance of voluntary be-
havior in rehabilitation treatment and outcomes. Archives of
physical medicine and rehabilitation, 100(1):156–163, 2019.

[6] Thomas S Buchanan, David G Lloyd, Kurt Manal, and Thor F
Besier. Neuromusculoskeletal modeling: estimation of muscle
forces and joint moments and movements from measurements
of neural command. Journal of applied biomechanics, 20(4):
367–395, 2004.

[7] J. W. L. Pau, S. S. Q. Xie, and A. J. Pullan. Neuromuscular In-
terfacing: Establishing an EMG-Driven Model for the Human
Elbow Joint. IEEE Transactions on Biomedical Engineering,
59(9):2586–2593, 2012.

[8] N. E. Cotter. The Stone-Weierstrass theorem and its ap-
plication to neural networks. IEEE Transactions on Neural
Network, 1:290–295, 1990.

[9] George Cybenko. Approximation by Superpositions of a
Sigmoidal Function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

[10] Silvia Ferrari and Robert F. Stengel. Smooth function approx-
imation using neural networks. IEEE Transactions on Neural
Networks, 16(1):24–38, 2005.

[11] Namig J. Guliyev and Vugar E. Ismailov. On the approxima-
tion by single hidden layer feedforward neural networks with
fixed weights. Neural Networks, 98:296–304, 2018.

[12] Alexander S. Poznyak, Edgar N. Sanchez, and Wen Yu.
Differential Neural Networks for Robust Nonlinear Control.
World Scientific Publishing, 2001.

[13] A. Poznyak. Advanced Mathematical Tools for Automatic Con-
trol Engineers: Volume 1: Deterministic Systems, volume 1.
Elsevier Science, 2008.

[14] Jorge Davila, Leonid Fridman, and Arie Levant. Second-
order sliding-mode observer for mechanical systems. IEEE
Transactions on Automatic Control, 50(11):1785–1789, 2005.

[15] Arie Levant. Robust exact differentiation via sliding mode
technique. automatica, 34(3):379–384, 1998.

[16] Roberto Merchant, David Cruz-Ortiz, Mariana Ballesteros-
Escamilla, and Isaac Chairez. Integrated wearable and self-
carrying active upper limb orthosis. Proceedings of the Institu-
tion of Mechanical Engineers, Part H: Journal of Engineering
in Medicine, 232(2):172–184, 2018.

[17] Ivan Salgado, Isaac Chairez, Oscar Camacho, and Cornelio
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