
  

 

Abstract— Simplified models of neurons are widely used in 

computational investigations of large networks. One of the most 

important performance metrics of simplified models is their 

accuracy in reproducing action potential (spike) timing. In this 

article, we developed a simple, computationally efficient neuron 

model by modifying the adaptive exponential integrate and fire 

(AdEx) model [1] with sigmoid afterhyperpolarization current 

(Sigmoid AHP). Our model can precisely match the spike times 

and spike frequency adaptation of cortical pyramidal neurons. 

The accuracy was similar to a more complex two compartment 

biophysically realistic model of the same neurons. This work 

provides a simplified neuronal model with improved spike 

timing accuracy for use in modeling of large neural networks.  

 
Clinical Relevance— Accurate and computationally efficient 

single neuron model will enable large network modeling of brain 

regions involved in neurological and psychiatric disorders and 

may lead to a better understanding of the disorder mechanisms. 

I. INTRODUCTION 

Development of neuron models to explain neuronal 
dynamics has a long history. Biophysically accurate models 
such as the Traub model [2] and the Pinsky-Rinzel model [3] 
were based on Hodgkin-Huxley model and explained 
membrane potential dynamics of a hippocampal neuron using 
numerous gated ion channels. In this framework, multiple 
differential equations are required to model a single gated ion 
channel, and due to fast dynamics of sodium and potassium 
voltage gated channels, small time steps are required for 
simulation stability. These disadvantages make modeling of 
large networks with biophysically accurate neuronal models 
prohibitively computationally expensive. At the other end of 
the complexity spectrum is the simple integrate-and-fire (IF) 
model which models action potentials with a threshold 
function. IF model is able to produce spikes in response to 
stimulation, but spike timing is determined only by membrane 
resistance, capacitance, and the magnitude of the injected 
current, and is not accurate. Other models such as Exponential 
Integrate and Fire [4] and Quadratic Integrate and Fire model 
[5] incorporated more complex action potential generation into 
the base IF model but lacked spike frequency adaptation found 
in pyramidal neurons of the cortex. Adaptation was 
incorporated into Izhikevich [6] and the AdEx [7] models 
which could replicate general firing patterns of fast spiking 
interneurons and thalamo-cortical neurons. However, these 
models were not shown to accurately match timing of spikes 
evoked by a wide range of current inputs, particularly in 
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cortical pyramidal cells. In the AdEx model, the membrane 
voltage has an exponential upswing at the threshold to spike 
followed by a numerical reset after each spike. Additionally, 
each spike increases the after hyperpolarization (AHP) current 
by a constant amount to explain spike-triggered adaptation 
(described in methods). In this work, we replaced the 
activation of the AHP current in the existing AdEx model by a 
sigmoid function to match timing of spikes evoked by varying 
levels of current injection.  

Precise spike timing is of paramount importance to studies 
of spike time dependent synaptic plasticity [8], formation of 
memory engrams [9], understanding of spatiotemporal 
memory processes [10], among many others. Fitz et al. 2020 
[11] showed that semantic information may be stored in the 
AHP variable of a neuron for sequential language processing. 
Thus, development of a simplified neuronal model that can 
accurately predict spike timing based on current input may 
contribute to computational studies of brain networks and their 
disorders. 

 In this work, we recorded the membrane potential of 
cortical excitatory neurons after different levels of current 
injection (25 pA to 275 pA with a Δstep of 25 pA) at a 
frequency of 5 Hz, which is in the range of activating long term 
plasticity. We then determined whether our new Sigmoid AHP 
model can match experimentally obtained spike times better 
than the established AdEx model. We also compared the 
performance of the Sigmoid AHP model to the biophysically 
accurate Pinsky-Rinzel model in matching the spike timing.  

II. METHOD 

A. Culture preparation and Experimental procedure 

Cultures of dissociated cortical neurons were prepared 
from post-natal day 0–1 Sprague-Dawley rat pups (Charles 
River Laboratories) as described earlier [12]. On day in vitro 
(DIV) 11 to 20, we replaced the culture medium with an 
artificial cerebrospinal fluid (ACSF) solution (at 37⁰C) for 
performing whole cell current clamp recordings. The ACSF 
solution contained (in mM): 140 NaCl, 2.4 KCl, 10 HEPES, 
10 glucose, 2 CaCl2, 1 MgCl2, 1 Na2HPO4 (p H 7.4) [13]. 
Recording electrodes had 5-10 MΩ resistance when filled with 
internal solution containing (in mM): 130 k-gluconate, 10 
HEPES, 10 phosphocreatine, 5 KCl, 1 MgCl2, 4 ATP-Mg and 
0.3 mM GTP [14]. Recordings were acquired at 10 kHz.  
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B. Pinsky-Rinzel Model 

We adapted a two compartmental Pinsky-Rinzel model 
[3]. Briefly, the model consists of one soma and one dendritic 
compartment with ionic currents for each compartment, the 
coupling conductance between compartments, and Ca2+ 
concentration in the dendritic compartment. The soma 
compartment has one Na+ transient channel (𝐼𝑁𝑎) and one 
delayed rectifier K+ channel (𝐼𝐾−𝐷𝑅). The dendritic 
compartment has one slow after hyperpolarization K+ channel 
(𝐼𝐾−𝐴𝐻𝑃), one rapid voltage and Ca2+ dependent K+ channel 
(𝐼𝐾−𝐶), and one high-threshold voltage dependent Ca2+ 
channel (𝐼𝐶𝑎). Keeping the governing equations same as the 
existing model [3], we modified the maximum conductance of 
each ionic channel and its gating variables (activation and 
inactivation parameters) to fit the experimental results of our 
dissociated cortical neurons. All simulations were performed 
in NEURON at 0.025 ms time step. The neuron model [3] was 
obtained from ModelDB (accession number 35358). 

C. AdEx and Sigmoid AHP Model 

The governing equations for AdEx model [1] are,  

𝜏𝑚

𝑑𝑢

𝑑𝑡
= −(𝑢 − 𝑢𝑟𝑒𝑠𝑡) + ∆𝑇 exp (

𝑢 − 𝜗𝑟ℎ

∆𝑇

) − 𝑅𝑤 + 𝑅𝐼 

𝜏𝑤
𝑑𝑤

𝑑𝑡
= −𝑤 + 𝑎(𝑢 − 𝑢𝑟𝑒𝑠𝑡) + 𝑏 ∑ 𝛿(𝑡 − 𝑡𝑓)𝑡𝑓    

Here, 𝑢 is the absolute membrane potential with resting 
potential of 𝑢𝑟𝑒𝑠𝑡 and 𝑤 is the AHP current. 𝜏𝑚 and 𝜏𝑤 are the 
time constants. The AHP current is fed back to the voltage 
equation with resistance, 𝑅. The sharpness of the action 
potential is controlled by ∆𝑇 and threshold voltage 𝜗𝑟ℎ. 𝐼 is the 
input current injection. The voltage, 𝑢 is reset if the membrane 
potential reaches the numerical threshold 𝜃𝑟𝑒𝑠𝑒𝑡 . After firing, 
integration of the voltage restarts at 𝑢 = 𝑢𝑟. 𝑎 is the coupling 

of voltage to adaptation. 𝑡𝑓represents timing of spikes 
indicating each spike will increase the AHP current by a 
constant 𝑏. We modified the AdEx model by introducing a 
sigmoid function in the AHP variable to resemble the dynamic 
behavior of the intracellular Ca2+ gated K+ channel: 

     𝜏𝑤
𝑑𝑤

𝑑𝑡
= −𝑤 + 𝑏 ∑ 𝛿(𝑡 − 𝑡𝑓) ∗ (𝑝 +

𝑞

1+𝑒𝑥𝑝(−𝑟(𝑤−𝑠))
)𝑡𝑓   

In sigmoid AHP, each spike will increase the AHP current by 
𝑏 multiplied by a sigmoid function of the previous value of 
AHP. 𝑝, 𝑞, 𝑟, 𝑎𝑛𝑑 𝑠 are tunable parameters that determine how 
the change in adaptive current will be influenced by its 
previous level. All simulations were performed in MATLAB 
at 1 ms time step. Parameters of Sigmoid AHP and Pinsky-
Rinzel model were optimized for neuron properties measured 
at 37⁰C (Data shared at doi.org/10.6084/m9.figshare.148384 
02.v7). 

D. Evaluation Metric 

To evaluate the model fitting for 10 neurons, we measured 
the relative error of time to first and second spikes (𝑇𝐴𝑃

1  and 
𝑇𝐴𝑃

2 , respectively) and adaptivity index (𝐴. 𝐼𝑛𝑑𝑒𝑥) for each 
current injection (25 pA to 275 pA with a Δstep of 25 pA). 
Adaptivity index was defined as the ratio of the final inter-
spike interval (ISI) over the first inter-spike interval, 
𝐼𝑆𝐼𝑓𝑖𝑛𝑎𝑙/𝐼𝑆𝐼𝑓𝑖𝑟𝑠𝑡 . Relative error of each metric for each 

injected current was expressed as |𝑒𝑥𝑝 − 𝑚𝑜𝑑𝑒𝑙|/𝑒𝑥𝑝.  

III. RESULTS 

We injected current at a frequency of 5 Hz with 100 ms 
pulse-width (described in methods) to 10 excitatory neurons 
and measured the membrane potential. Then we characterized 
several neuron properties (Resting potential (𝑉𝑟𝑒𝑠𝑡), input 
resistance (𝑅𝐼𝑁), time constant 𝜏𝑚, half-width of spike 𝐴𝑃 −
𝑊1/2, and adaptivity index (A.Index)) based on the current 

clamp data. Mean and standard deviation of these properties 
are shown in Fig. 1 (black horizontal and vertical lines, 
respectively). To evaluate our sigmoid AHP model, we fitted 
these 10 neurons using one set of parameters per neuron and 
quantified the error for each current injection and the overall 
relative error. We then compared these results with the results 
obtained via the biophysical Pinsky-Rinzel model.  

  Optimization of the parameters to best fit the 
experimental results was done in three steps for both AdEx and 
sigmoid AHP models. First, membrane time constant 𝜏𝑚 and 
input resistance 𝑅 were determined by matching the potential 
response to the lowest negative input current (-25 pA). Second, 
time to first spike (𝑇𝐴𝑃

1 ) was only a function of the exponential 
term in the first model equation. So, the absolute difference 
between the experiment and model for the time of the first 
spike (relative to the beginning of current injection) was 
minimized by tuning ∆𝑇 and 𝜗𝑟ℎ. Third, the two other 
evaluation metrics (time to second spike (𝑇𝐴𝑃

2 ) and adaptivity 
index) were controlled by the AHP current, 𝑤. Parameters 
related to 𝑤 were iteratively tuned until the average relative 
errors to all current inputs of both time to second spike and 
adaptivity index were below 20%. 

Although AdEx model was able to match 𝑇𝐴𝑃
1 , it could not 

provide a good fit for both 𝑇𝐴𝑃
2  and adaptivity index (Fig. 2B 

top and middle panel) for each current input. Since the AdEx 
increases the AHP current by a constant amount after each 
spike, it could either fit the experimental 𝑇𝐴𝑃

2  (Fig. 2B top panel 
when time constant of the AHP current, 𝜏𝑤 is small) or 
adaptivity index (Fig. 2B middle panel when 𝜏𝑤 is large). We 
hypothesized that the AHP current remains small after the first 
spike but increases rapidly after the subsequent spikes due to 
intracellular [Ca2+] dynamics. To implement this idea, we used 
a sigmoid increase of AHP current in our model that could fit 
the experimental data for all current inputs (Fig. 2B bottom 
panel). As expected, the maximum amplitude of the AHP 
current (shown as yellow traces in all panels of Fig. 2B) with 
the AdEx was nearly uniform for small 𝜏𝑤 and slowly 
increasing for large 𝜏𝑤, but it rapidly transitioned to a much 
larger value with the sigmoid AHP following high frequency 
firing. Average relative error for the neuron shown in Fig. 2B 
with all current inputs with the sigmoid AHP model was 4% 
for 𝑇𝐴𝑃

1 , 8% for 𝑇𝐴𝑃
2  and 10% for adaptivity index. Whereas the 

Figure 1: Selection of 10 excitatory neurons for model fitting. Resting 

potential (𝑉𝑟𝑒𝑠𝑡, mV), Input resistance (𝑅𝐼𝑁, MΩ), Time constant (𝜏𝑚, 

ms), Spike half-width (𝐴𝑃 − 𝑊1/2, ms), Adaptivity Index (A.Index) of 

10 neurons (shown in red circles). Mean and standard deviation of 10 
excitatory neurons are shown in black horizontal and vertical lines, 

respectively.  
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average relative error with the AdEx model (small 𝜏𝑤), was for 
4% 𝑇𝐴𝑃

1 , 11% for 𝑇𝐴𝑃
2  and 45% for adaptivity index and the 

average relative error with the AdEx model (large 𝜏𝑤), was for 
10% 𝑇𝐴𝑃

1 , 25% for 𝑇𝐴𝑃
2  and 22% for adaptivity index.  

We then fit the experimental data using Pinsky-Rinzel 
model (Fig. 2C). Crosstalk of nearly 50 parameters in the 
Pinsky-Rinzel equations lead to an iterative approach to match 

the experimental data. Similar to the initial step applied with 
the previous models, we tuned the capacitance and leakage 
channel to fit the potential for the lowest negative current input 
Na channel and K-DR channel from the soma compartment; 
Ca channel, K-AHP channel and K-C channel from the 
dendrite compartment were determined by matching 𝑇𝐴𝑃

1 , 𝑇𝐴𝑃
2  

and adaptivity index with each positive current injection for 
each neuron. Maximum conductances and some non-trivial 
gating parameters were tuned for a tradeoff between 
complexity and modeling accuracy. Parameter combinations 
that achieved the smallest error metric were selected. The 
equivalent AHP current (𝐼𝐾−𝐴𝐻𝑃 + 𝐼𝐾−𝐶) from the Pinsky-
Rinzel (yellow trace in Fig. 2C) had the similar dynamics as 
the AHP current from the sigmoid AHP (yellow trace in the 
bottom panel of Fig. 2B). AHP current of the Pinsky-Rinzel 
model have a different amplitude compared to AdEx and 
sigmoid AHP, because the former also had a K+ rectifier 
current to repolarize the membrane voltage. Average relative 
error for the neuron shown in Fig. 2 with all current inputs for 
Pinsky-Rinzel was 3% for 𝑇𝐴𝑃

1 , 4% for 𝑇𝐴𝑃
2  and 16% for 

adaptivity index. Both sigmoid AHP and Pinsky-Rinzel model 
yielded close match with the experimental findings of this 
neuron. 

Next, we compared our evaluation metrics between 10 
experimental neurons fitted by the sigmoid AHP and by the 
Pinsky-Rinzel model (Fig. 3). Relative errors of 𝑇𝐴𝑃

1 , 𝑇𝐴𝑃
2 , and 

adaptivity index were measured for each spike-evoking 
current input (Fig. 3A top, middle, and bottom panel 
respectively). No neuron had more than one spike with 100 pA 
current input and more than two spikes with less than 175 pA 
current input. Relative errors with any current input were not 
over 15% for 𝑇𝐴𝑃

1 , 10% for 𝑇𝐴𝑃
2 , and 20% for 𝐴. 𝑖𝑛𝑑𝑒𝑥 with 

sigmoid AHP (blue dots and blue boxplots in Fig. 3A). 
Similarly, they were not over 8% for 𝑇𝐴𝑃

1 , 10% for 𝑇𝐴𝑃
2 , and 

30% for 𝐴. 𝑖𝑛𝑑𝑒𝑥 with Pinsky-Rinzel (green dots and green 
boxplots in Fig. 3A). Finally, we drew an overall comparison 
between the two models by taking the median of relative errors 
for all current inputs per neuron (Fig. 3B). The upper range 
(75th percentile) for [𝑇𝐴𝑃

1 , 𝑇𝐴𝑃
2 , 𝐴. 𝑖𝑛𝑑𝑒𝑥] was [3%, 5%, 15%] 

with sigmoid AHP and [4%, 5%, 24%] with Pinsky-Rinzel 
model.  

IV. DISCUSSION 

In this work, we developed a fast computational model of 

a single neuron that could generate realistic timing of 

neuronal spiking due to input current. Sigmoid AHP model 

achieved spike timing accuracy that was comparable to or 

better than biophysically accurate Pinsky-Rinzel model. High 

accuracy of the Sigmoid AHP model was achieved by 

implementing an AHP current with sigmoid dynamics that 

approximated Ca2+ gating: spike triggered AHP current had a 

rapid increase after the evocation of more than one spike. This 

idea agrees with Andrade et al. 2012 [15] that demonstrated 

Ca2+ dependent afterpotential as a function of spike 

frequency. Because of the smaller number of equations and 

larger time steps compared to the Pinsky-Rinzel model, we 

expect that Sigmoid AHP model will be substantially less 

computationally expensive when used in large network 

simulations. Due to its accuracy in matching spike timing, this 

Figure 2: Model fitting of experimental I-V curves of one neuron. (A) 
Traces of injected current (black line, right y axis) and membrane 

potential (red dashed line, left y axis) from the experiment. (B) 

Simulation of the experimental fits for three current injections (left: 
150 pA, middle: 200 pA, right: 250 pA). The AdEx model with large  

𝜏𝑤 (blue line; top panel), The AdEx model with small 𝜏𝑤 (blue line; 

middle panel) and the sigmoid AHP model (blue line; bottom panel). 

Yellow line in all panels indicates the AHP variable (C) Fitting 
Pinsky-Rinzel model to the experimental trace for the same three 

current injections (left: 150 pA, middle: 200 pA, right: 250 pA) of the 

same neuron. Yellow line represents the AHP current (𝐼𝐾−𝐴𝐻𝑃 + 𝐼𝐾−𝐶) 

from the Pinsky-Rinzel. Vertical scalebar at left in panel (B & C) 

indicates 50 mV. Vertical scalebar at right indicates 200 pA in panel B 
and 20 pA in panel C. Both panel B & C have the same horizontal 

scalebar of 100 ms.  
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model can be used in spiking neural network studies of 

supervised learning algorithms [16] or drug application [17], 

among many others.  
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Figure 3: Evaluation of modeling results as relative error (Rel. error) and 

their comparison. (A) (Top panel) Relative error of time to 1st AP (𝑇𝐴𝑃
1 ) 

was measured for each current injection. Each dot (blue for sigmoid AHP 

and green for Pinsky-Rinzel model, respectively) indicates one neuron that 

evokes at least one spike during the input current pulse. Boxplot shows the 
median (middle line), 25th (bottom line), and 75th (top line) percentile of the 

relative error for different current injection. (Middle panel) Same as top 

panel, but for the relative error of time to 2nd AP (𝑇𝐴𝑃
2 ). (Bottom panel) 

Same as top panel, but for the relative error of adaptivity index (𝐴. 𝐼𝑛𝑑𝑒𝑥). 

(B) Each dot (blue for sigmoid AHP and green for Pinsky-Rinzel model, 

respectively) here represents the median of relative errors for all input 

current pulses for one neuron. Relative errors of each metric are shown in 
the x axis. Boxplot shows the median (middle line), 25th (bottom line), and 

75th (top line) percentile of the data. 
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