Electrode Spacing and Current Distribution in Electrical Stimulation of Peripheral Nerve: A Computational Modeling Study using Realistic Nerve Models

Jinze Du1, Student Member, IEEE, Andres Morales2, Student Member, IEEE, Javad Paknahad1, Student Member, IEEE, Pragya Kosta3, Member, IEEE, Jean-Marie C. Bouteiller2, Senior Member, IEEE, Eduardo Fernandez4, Member, IEEE, and Gianluca Lazzi1,2,3, Fellow, IEEE

Abstract—Electrical stimulation of peripheral nerves has long been used and proven effective in restoring function caused by disease or injury. Accurate placement of electrodes is often critical to properly excite the nerve and yield the desired outcome. Computational modeling is becoming an important tool that can guide the rapid development and optimization of such implantable neural stimulation devices. Here, we developed a heterogeneous very high-resolution computational model of a realistic peripheral nerve stimulated by a current source through cuff electrodes. We then calculated the current distribution inside the nerve and investigated the effect of electrodes spacing on current penetration. In the present study, we first describe model implementation and calibration; we then detail the methodology we use to calculate current distribution and apply it to characterize the effect of electrodes distance on current penetration. Our computational results indicate that when the source and return cuff electrodes are placed close to each other, the penetration depth in the nerve is shallower than the cases in which the electrode distance is larger. This study outlines the utility of the proposed computational methods and anatomically correct high-resolution models in guiding and optimizing experimental nerve stimulation protocols.

I. INTRODUCTION

Electrical stimulation of peripheral nerve is used for various applications including pain treatment \cite{1}, restoration of motor functions following spinal cord injury or stroke \cite{2,3}, and treatment of epilepsy by vagus nerve stimulation \cite{4}. Different electrode designs have been developed for efficient nerve stimulation, such as spiral electrodes \cite{5}, cuff electrodes \cite{6}, intraneuronal interfaces with thin wires \cite{7,8}, and silicon probes \cite{9,10}. Cuff electrodes are amongst the most widely used electrodes for peripheral nerves since they have several advantages compared to others: 1) they allow for the reduction of input current intensity, and thus, minimize the possibility of nerve damage, 2) they allow for correct positioning of electrode leads to minimize mechanical distortion and damage, and 3) provide selective stimulation of nerve fascicles.

There have been numerous neurophysiological studies designed to evaluate the effect of electrode position on neural excitation. Early studies by Simmons and Glattke \cite{11} and Walloch and Cowden \cite{12} demonstrated that electrical stimulation is more efficient in exciting nerve fibres than Scala tympani stimulation when electrodes were placed directly into the nerve. Shepherd et al. \cite{13} found that the optimal electrode position for auditory nerve excitation results in significant threshold reduction. However, few studies focused on parametric assessment of the effectiveness of peripheral nerve stimulation using very-large scale, anatomically correct, peripheral nerve models.

In this paper, we have utilized convolutional neural network segmentations of nerve cross sectional images along with a multi-scale, computational model of field distribution to study the effect of cuff electrode positions on peripheral nerve stimulation. Our multi-scale computational modeling platform is based on the Admittance Method (AM) \cite{14} to predict the electric fields generated inside peripheral nerve tissue. Peripheral nerve tissue is represented by a heterogeneous very high-resolution nerve model that is based on segmented cross-sectional images of rat sciatic nerve and includes fine details such as axons and myelin. Using AM computed electric field values and current distribution inside the nerve, we investigated the effect of the distance that separates the source and return cuff electrodes on the internal current distribution, which provide a basis for application-specific electrode design.

II. METHODS

A. Building Nerve Model using CNN Segmentation of Peripheral Nerve Cross-sectional Images

Due to the complexity and the densely populated inner nerve structures, to the best of our knowledge, none of the currently used computational models of peripheral nerve stimulation are based on realistic very high resolution model replicated from true peripheral nerves \cite{15}. In
fact, most of the studies use either simplified nerve model with homogeneous fascicles or heterogeneous fascicles populated by axons with artificial radii and locations [16–19]. Thus, we constructed a peripheral nerve model using high-resolution cross-sectional image of a real peripheral nerve. To accomplish this, we utilized a confocal image of rat sciatic nerve and performed image segmentation to highlight axons and myelin. Image segmentation is performed using AxonDeepSeg, an open source easily trained convolutional neural network (CNN) described in [20]. The confocal image and the resulting segmented image are shown in Fig. 1. Next, the segmented cross-sectional image is discretized and extruded to build the pseudo-3D length of nerve for electrical stimulation modeling.

B. Model Building and Admittance Method

The multi-scale model considered for peripheral nerve stimulation consists of two main components: the segmented nerve model and the model of cuff electrode. The cuff electrodes are modeled based on the cuff electrode design from typical commercial cuff electrode, with 3 metal contact wires in each cuff electrode. Only the metal contact part of the electrode is modeled while the other non-conductive elements that are not in touch with the tissue, such as the surrounding insulation layer, are discarded since they do not impact the current distribution in the tissue. Three simulation models with different electrode positions are considered in this study as visualized in Fig. 2. The size of the model is 300x300x550 voxels in x, y, z dimensions and the resolution is 8 µm in all three dimensions. The model is discretized in cubic voxels and each voxel is represented by a unique material index. The material properties of the nerve model are taken from [21, 22] and described in Table 1.

\[
g_{i,j,k} = \sigma_{i,j,k} \Delta y \Delta z \Delta x
\]

A current vector (I) is defined with current values applied to whichever nodes contain a source. A voltage vector (V) can then be solved for using G and I in Equation 2. A multi-threaded Python program using a biconjugate gradient algorithm is developed to construct the matrices and solve the matrix equation with accelerated speed.

\[
GV = I
\]

A 3D multi-resolution meshing algorithm is executed prior to the field simulations in order to reduce the complexity of the problem without impacting the accuracy of the solution. In this, a high level of details and fine resolution is maintained near the nerve periphery, in locations proximal to the contact electrode, and the voxel size is increased further away from nerve periphery where fine resolution is
unnecessary. Therefore, along the center of the nerve bundle, the resolution would be coarser, whereas along the periphery of the nerve (i.e. closer to the electrodes and fascicle edges), the resolution would remain fine. In this way, the number of nodes and edges are decreased and the computational complexity of the system is reduced.

C. Current Density: Interpolation of Voltage Values

AM simulations provide voltage values at every node of the model. In our multi-resolution scheme, network nodes are located at the vertices of voxels. Because conductivity value is considered constant inside each voxel, trilinear interpolation is used to calculate the voltage at arbitrary points inside a voxel from the values at its vertices. Once voltage values have been interpolated back to unit voxel, electric field, charge density and current density could be calculated at any point in the model. The entire interpolation process is depicted in Fig. 3.

III. RESULTS

A. Current Distribution inside the Nerve

A Python program is developed to interpolate AM computed electric field and to compute current density distributions inside all three simulation models. As an example, the current density distribution inside the nerve for simulation model with 4 mm electrode spacing is shown in Fig. 4. A 3D perspective view of the simulation model is shown on the top panel of the figure. In the bottom panels, the current density distribution inside the nerve is plotted at three different XY-slices, each located at three electrodes positions. Current distribution on XY-slices corresponding to source and return electrode locations (Fig. 4(a) and (c)) demonstrate that the current density values are higher near the nerve periphery and near the edges of fascicles which are close to electrodes. Further, we can see the hot spots at the edge of fiber fascicles in the slices with electrodes. Conversely, for the XY-slice located at the non-functional floating electrode (Fig. 4(b)), far from source and return electrodes, inside the fiber fascicles there is higher current flowing inside the axon intracellular space due to its low resistivity. The axon intracellular space works as a conductive channel that can deliver current from source electrode to return electrode throughout entire nerve. In comparison to extracellular space, a lower current flows through the extracellular space.

B. Current Penetration Depth and Electrode Separation

All three simulation models (with 4 mm, 2 mm and 1 mm electrodes spacing) consider a stimulation level of 100 µA current amplitude. Every other detail of these models is ensured to be the same except the electrodes locations. For all three simulation models, we computed the radial average values of the current density on the floating electrode slices. Fig. 5 presents the plots of these radial average current density values with respect to the radial distance, R, ranging from the nerve center to the nerve edge. Results presented in Fig. 5 suggest that when the source and return electrodes are placed at 1 mm separation distance, the current flowing in the center of the nerve is significantly lower than that of 2 mm and 4 mm separation distances. Therefore, these results suggest that when the source and return electrodes are placed too close to each other, current penetration into the nerve center is less compared to the cases when source and return electrodes are separated farther. In addition, the current distribution peak for the 1 mm electrode distance setup is near the nerve bundle edge, which implies that the current is not flowing deep enough into the nerve center to recruit a large number of fibers. Rather current is flowing along the nerve edge area directly from the source electrode to the return electrode without entering deep into the center. Finally, the curves in Fig. 5 suggest that the heterogeneity of the nerve model significantly affects the current distribution inside the nerve. Therefore, realistic heterogeneous peripheral nerve models are essential for the analysis and design of peripheral neurostimulation electrodes.
IV. DISCUSSION
A computational study using the Admittance Method multi-scale computational platform was conducted to further our understanding of the effect of electrical stimulation site in the peripheral nerve electrical stimulation. We first performed the image segmentation of nerve cross-sectional images using convolutional neural network and then built realistic peripheral nerve models from the segmentation results. We also developed realistic cuff electrode models with different separation distances between electrodes. We found that the current distribution values around the nerve center are lower when the source electrode and return electrode are placed in a closer vicinity. Our results suggest that the accurate, high-resolution anatomical features of the peripheral nerve significantly affect the current distribution inside the nerve. This suggests that a very high resolution and accurate model of the peripheral nerve plays a critical role in the design and optimization of neurostimulating electrodes. Besides implications on recruitment of target fibers, the significant variations due to the model heterogeneity have implications on the level of stimulation that are considered safe and do not induce axonal damage. Thus, with the proposed method and models, criteria for safe and effective peripheral neurostimulations can be established.

REFERENCES