
  


 

Abstract— Diffusion tensor imaging (DTI) has been used to 

explore changes in the brain of subjects with human 

immunodeficiency virus (HIV) infection. However, DTI 

notoriously suffers from low specificity. Neurite orientation 

dispersion and density imaging (NODDI) is a compartmental 

model able to provide specific microstructural information with 

additional sensitivity/specificity. In this study we use both the 

NODDI and the DTI models to evaluate microstructural 

differences between 35 HIV-positive patients and 20 healthy 

controls. Diffusion-weighted imaging was acquired using three 

b-values (0, 1000 and 2500 s/mm2). Both DTI and NODDI models 

were fitted to the data, obtaining estimates for fractional 

anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), 

axial diffusivity (AD), neurite density index (NDI) and 

orientation dispersion index (ODI), after which we performed 

group comparisons using Tract-based spatial statistics (TBSS). 

While significant group effects were found in in FA, MD, RD, 

AD and NDI, NDI analysis uncovered a much wider involvement 

of brain tissue in HIV infection as compared to DTI. In region-

of interest (ROI)-based analysis, NDI estimates from the right 

corticospinal tract produced excellent performance in 

discriminating the two groups (AUC = 0.974, sensitivity = 90%; 

specificity =97%). 
Clinical Relevance—The NODDI model combines additional 

sensitivity with built-in specificity, and provide additional 
information about the microstructural changes in multimodal 
areas involved in attentive, emotional and memory networks 
which are impaired in HIV patients. 

I. INTRODUCTION 

Diffusion Weighted Magnetic Resonance Imaging (MRI) 
techniques play a key role in e.g. characterizing neoplastic 
tissues, to assess abnormalities in neurodegenerative diseases, 
and to predict and monitor response to therapeutic treatment 
[1]–[5]. Diffusion Weighted Imaging (DWI) is sensitive to the 
random movement of water molecules within tissue and 
consequently to microstructural tissue features [6]. Diffusion 
tensor imaging (DTI) can detect degeneration of the central 
nervous system (CNS) based on the assumption that the 
movement of water molecules within tissues is described by a 
Gaussian distribution [7], [8]. However, in biological tissues, 
there are cellular and macromolecular structures that affect the 
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free diffusion of water molecules [9]–[12]. An alternative 
approach is to use biophysical models of the MRI diffusion 
signal to obtain more specific biomarkers of tissue 
microstructure. The neurite orientation dispersion and density 
imaging (NODDI) [13] is a biophysical models that can be 
fitted using data compatible with clinically feasible scan times. 
It can provide estimates of fiber density, orientation dispersion 
and distribution of axonal diameters. NODDI is a three-
compartment model [14]: (a) intra-neurite compartment, 
which is represented by axons and is modelled as a collection 
of infinitely thin sticks; (b) extra-neurite compartment, 
including microglia, astrocytes, oligodendrocytes, neuronal 
cell bodies, ependymal cells, extra-cellular matrices, and 
vascular structures; (c) a free-water compartment, modeled as 
isotropic diffusion. Two main tissue parameters can be 
obtained after model fitting: the orientation dispersion index 
(ODI) and the neurite density index (NDI). ODI is sensitive to 
neurite dispersion, from strictly parallel to completely 
dispersed (higher ODI relates to greater neurite dispersion). In 
contrast, NDI is related to the number of neurites in a voxel 
(higher NDI relates to a higher number of [15]). NODDI has 
been used to study various clinical conditions such as brain 
tumors, epilepsy, Alzheimer's disease, traumatic brain injury, 
multiple sclerosis and stroke [16]–[21]. In all these studies, 
NODDI provided additional information compared to the DTI 
model. In addition, the ability of NODDI to characterize tissue 
microstructure was demonstrated through histological findings 
[20].  

Several diffusion techniques have been used to assess 
morphological and structural changes in the CNS of HIV-
infected patients and to monitor the course of the disease [22]–
[26]. The HIV infects the CNS and can affect the neuronal 
networks, damaging the white and grey matter [27]. In this 
context, it has been shown that HIV-positive patients develop 
cognitive impairment. These abnormalities are correlated with 
diffusion imaging metrics that are able to study alterations in 
brain microstructure [28], [29]. The aim of the study is to 
explore microstructural brain changes in HIV patients using to 
gain more insight about compartmental-specific changes in 
microstructure due to HIV infection. An overall workflow of 
the study is shown in Figure 1. 
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II. METHODS 

A. Participants 

The Department of Infectious Diseases of the University 
Hospital Rome 'Tor Vergata' enrolled a total of 55 subjects 
composed (35 HIV-positive patients and 20 healthy controls. 
The present study was authorized by the hospital ethics 
committee. Inclusion criteria: (a) a previous HIV infection and 
(b) no clinical evidence of neurological disorders. Exclusion 
criteria: (a) history of head trauma, (b) stroke, (c) epilepsy, (d) 
CNS infections, (e) demyelinating disease, (f) tumors, (g) 
coinfections, (h) or any kind of contraindication to MRI 
examinations. The HIV-positive patients were made up by 27 
men and 8 women, with an average age of 41.3 years (range 
24–65 years). Healthy controls were made up by 11 men and 
9 women, with an average age of 44.1 years (range 27–64 
years). There were no statistically significant differences 
between the groups regarding either in age (p = 0.46, Mann–
Whitney-U-Test) or gender (p = 0.08, Chi-Square Test).  

B. MR Imaging protocol 

MR imaging was performed with a 3T system (Achieva 3T 
Intera, Philips Healthcare, Best, The Netherlands), using 8 
channel phased array head coil. Gradients amplitude and rise 
time were 80 mT/m and 200 mT/m/ms, respectively. For all 
subjects, the MRI acquisition protocol included: axial T2-
weighted TSE sequence, axial T2-fluid attenuated inversion 
recovery, sagittal T1-weighted turbo spin echo sequence, and 
a T1-3D fast field echo sequence, which were used by an 
expert neuroradiologists to exclude visible abnormalities. 
Diffusion-weighted imaging were acquired using a spin-echo 
(SE) echo-planar (EPI) single-shot sequence with the 
following parameters: acquisition matrix, 94 × 94; field of 
view, 24 x 24 cm2; repetition time/echo time, 7774 ms/89 ms; 
slice thickness, 2.5 mm; slices, 60; no gap. Three different b 
values (0, 1000, 2500 s/mm2) were used. Thirty-two 
noncoplanar and noncollinear directions were chosen for the 
diffusion-weighed imaging (b = 1000, 2500 s/mm2) and eight 
non-diffusion-weighted reference images (b = 0 s/mm2) were 
also collected. The SENSE (SENSitivity Encoding) imaging 
option with a scan time reduction factor of 2 was used. 

 

Figure 1.  Overall workflow of the study 

C. MR imaging data preprocessing and model fitting 

Diffusion weighted images were preprocessed using the 
eddy tool, part of FSL (FMRIB Software Library v. 6.0.4, 
Oxford, UK) [30], to correct for subject motion and eddy 
currents. The Microstructure Diffusion Toolbox (MDT) using 
the Cascade Initialized optimization strategy [31], [32] was 
used to analyze DTI and NODDI models through a Powell 
optimization procedure. The diffusion-weighed imaging with 
b values = 0 and 1000 s/mm2 were used to fit the DTI model 
and obtain FA, MD, RD, and AD maps. All b values (0, 1000, 

2500 s/mm2) were used to fit the NODDI model, hence 
obtaining the NDI and ODI maps. Successively, Regions of 
Interest (ROI) were defined using the ICBM-DTI-81 white-
matter labels Atlas [33] (48 ROIs across the whole brain) and 
mean values for all indices were calculated within each ROI. 

D. Statistical analysis 

Tract Based Spatial Statistics (TBSS) [34] (part of FSL) 
was used for voxel-wise group comparison of all parameters. 
The TBSS analysis consists of the following steps: (a) 
nonlinear registration of all FA images with each other; (b) 
identification of the most representative FA image and use of 
this as the target image; (c) affine alignment of the target image 
in the Montreal Neurological Institute (MNI) 152 standard 
space; (d) transformation of each image into the MNI152 
1x1x1mm3 space by combining the nonlinear transformation 
of the target FA image with the affine transformation from that 
target to the MNI152 space; (e) creation of mean of all FA 
images; (f) threshold at 0.2 and thinning to create an average 
FA skeleton, (g) projection of each subject's aligned FA data 
onto this skeleton. Successively, all previously computed 
warps are applied to all maps (MD, RD, AD, NDI and ODI), 
warping them into MNI space for subsequent skeletonization 
as above. The skeletonization step improves robustness against 
between-subject registration errors. Resulting data were then 
fed into voxel wise inter-subject, non-parametric statistics 
using randomize, also part of FSL. For all diffusion-derived 
metrics (DTI and NODDI), we tested the null hypothesis of no 
differences between HIV positive patients and healthy controls 
subjects using separate general linear models (GLMs), which 
included age and gender as nuisance covariates and correction 
for multiple comparisons over space using permutation-based 
nonparametric inference within the framework of the GLM 
(10,000 permutations) and using the Threshold-Free Cluster 
Enhancement (TFCE) [35], which eliminates the need for an 
arbitrary cluster threshold definition. A corrected p-value < 
0.05 was assumed to be statistically significant. After TBSS, 
for each metric we also calculated the percentage of voxels 
(out of the whole skeleton) in which a significant effect was 
found. Finally, separate receiver operating characteristic 
(ROC) curves analysis was employed for each ROI and each 
metric to quantify the discrimination potential between HIV 
positive patients and healthy controls. For each ROC curve, 
the following parameters were evaluated: sensitivity, 
specificity, positive predicted value (PPV) and negative 
predicted value (NPV). The Kruskal-Wallis test and a post–
hoc test with Bonferroni correction were used to determine if 
there were significant differences in ROC curve-related 
parameters across diffusion metrics. 

III. RESULTS 
 

TBSS results (Figure 2) showed lower FA and NDI values 
in HIV positive patients compared to controls. In particular, 
we observed lower FA values in HIV patients with moderate 
prevalence in the right brain hemisphere along the uncinate 
and superior longitudinal fasciculi, along the tight inferior 
frontal-occipital bundle, left forceps minor and in the cingulate 
gyrus. MD, RD and AD values were higher in HIV positive 
patients as compared to healthy subjects. In the same 
comparison, MD and RD metrics showed higher values along 
the cingulate gyrus, right superior longitudinal fasciculus and 
along the U-fibers with slight right brain hemisphere 
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prevalence; moreover, RD values were higher at the 
ganglionic level, and AD showed lower values in the right 
brain hemisphere along the inferior longitudinal fasciculus, the 
cortico-spinal tract, the temporal part of the superior 
longitudinal and uncinate fasciculi. NDI analysis disclosed a 
less focal and wider involvement of brain tissue as compared 
to DTI metrics. In particular, lower NDI values were found in 
HIV infected patients (as compared to controls) along the 
cortico-spinal tract, cerebellar hemispheres and vermis, in the 
occipital lobes, along the brainstem and along the white matter 
of the frontal lobes. No statistically significant differences in 
ODI were detected between the two groups. Also, the overall 
percentage of volume (across the TBSS skeleton) in which we 
found statistically significant differences between HIV 
patients and healthy controls was greatest in NDI (Table I.) 

TABLE I.  STATISTICALLY SIGNIFICANT DIFFERENCES BETWEEN HIV 

PATIENTS AND HEALTHY CONTROLS 

Maps % Figure 

FA 14.32 2 (a) 

MD 24.97 2 (b) 

RD 27.33 2 (c) 

AD 11.00 2 (d) 

NDI 59.16 2 (e) 

% = % of voxels (out of whole skeleton) where we found significant group effects. Fractional 

anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD), neurite density 

index (NDI). 

 
ROC analysis demonstrated the higher discrimination 

ability of NDI (Figure 3, Table II). The median AUC values 
across ROIs were noticeably higher in NDI as compared to all 
other indices. Also, Figure 4 sample ROC curves for the ROI 
which, in each index, produced the highest AUC value. As an 
example, NDI values in the right corticospinal tract (region 7) 
produced the best performance overall (AUC = 0.974, 
sensitivity = 90%; specificity =97%, PPV= 95%, NPV=94% ).  

TABLE II.  MEAN AND STANDARD DEVIATION OF ROC CURVE 

PARAMETERS FOR DIFFUSION MAPS. 

Maps AUC Sen Spec PPV NPV 

FA 0.62[0.54-0.68] 0.70 [0.60-0.75] 0.59[0.51-0.66] 0.48[0.43-0.54 0.76[0.72-0.80] 

MD 0.34[0.29-0.38] 0.55[0.45-0.70] 0.37[0.26-0.49] 0.34[0.31-0.37] 0.60[0.56-0.65] 

RD 0.33[0.29-0.38] 0.55[0.40-0.66] 0.37[0.26-0.51] 0.34[0.31-0.37] 0.60[0.55-0.64] 

AD 0.39[0.33-0.42] 0.665[0.55-0.75] 0.39[0.31-0.46] 0.37[0.34-0.38] 0.64[0.59-0.68] 

ODI 0.52[0.45-0.60] 0.63[0.55-0.70] 0.54[0.43-0.63] 0.42[0.39-0.48] 0.71[0.67-0.74] 

NDI 0.82[0.72-0.88] 0.78[0.75-0.85] 0.77[0.66-0.86] 0.67[0.56-0.76] 0.86[0.82-0.91] 

Sensitivity (Sen), specificity (Spec), positive predicted value (PPV) and negative predicted value 

(NPV), fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity 

(AD), neurite density index (NDI) and orientation dispersion index (ODI). 

 

In addition, ROC curve parameters were significantly 

different (post-hoc comparisons) across metrics. (Table III) 

TABLE III.  SIGNIFICANT DIFFERENCES IN ROC CURVE PARAMETERS 

BETWEEN THE DIFFUSION MAPS.  

Maps p(AUC) p(Spe) p(Se) 

FA-MD <0.001 <0.001 0.042 

FA-RD <0.001 <0.001 0.017 

FA-NDI 0.014 0.007 0.004 

MD-NDI <0.001 <0.001 <0.001 

RD-NDI <0.001 <0.001 <0.001 

AD-NDI <0.001 <0.001 <0.001 

ODI-NDI <0.001 <0.001 <0.001 

Sensitivity (Sen), specificity (Spec), fractional anisotropy (FA), mean diffusivity (MD), radial 

diffusivity (RD), axial diffusivity (AD), neurite density index (NDI) and orientation dispersion index 

(ODI). p-value obtained with Kruskal-Wallis test and a post–hoc with Bonferroni correction. 

 

Figure 2.  Statistically significant differences in DWI maps between HIV 
positive patients and healthy control subjects. Blue: FA skeleton extracted 

from through TBSS analysis. (FA) Red-yellow: lower FA values in HIV 

positive patients compared to healthy control subjects. (MD) Red-yellow: 
higher MD values in HIV positive patients compared to healthy control 

subjects. (RD) Red- yellow: higher RD values in HIV positive patients 

compared to healthy control subjects. (AD) Red- yellow: higher AD values 
in HIV positive patients compared to healthy control subjects. (NDI) Red-

yellow: lower NDI values in HIV positive patients compared to healthy 

control subjects. 

 

Figure 3.  Box-and-whisker plots across ROIs showing AUC, Sensitivity 
and Specificity for fractional anisotropy (FA), mean diffusivity (MD), radial 

diffusivity (RD), axial diffusivity (AD), neurite density index (NDI) and 

orientation dispersion index (ODI) for discriminating between HIV positive 

patients and healthy controls.  

 

Figure 4.  ROC curves relative to the highes AUC we found across ROIs 
using separately fractional anisotropy (FA), mean diffusivity (MD), radial 

diffusivity (RD), axial diffusivity (AD), neurite density index (NDI) and 

orientation dispersion index (ODI) in the differentiation task between HIV 

patients and healthy controls.  
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IV. DISCUSSION AND CONCLUSION 

When comparing HIV-infected patients to healthy 
controls, the NODDI model showed more widespread brain 
involvement as compared to DTI model, also yielding a better 
overall discrimination performance. The brain structures in 
which NODDI-related indices were significantly different are 
related to multimodal associative brain areas whose functions 
(memory, attentive and emotional networks) are known to be 
often compromised in HIV positive patients [36], [37], hence 
offering a mechanistic explanation for these impairments. In 
addition, the NODDI model highlighted the involvement of 
the infratentorial structures, possibly related to the 
neurological impairments which can occur in HIV patients 
[37]. Finally, the superior discrimination accuracy of NODDI 
derived indices within a clinically feasible scan time makes it 
a possible candidate, neuroimaging-related biomarker for HIV 
studies where monitoring of brain involvement is desired. 
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