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Abstract— Common Spatial Pattern (CSP) is a popular
feature extraction algorithm used for electroencephalogram
(EEG) data classification in brain-computer interfaces. One
of the critical operations used in CSP is taking the average
of trial covariance matrices for each class. In this regard,
the arithmetic mean, which minimizes the sum of squared
Euclidean distances to the data points, is conventionally used;
however, this operation ignores the Riemannian geometry in
the manifold of covariance matrices. To alleviate this problem,
Fréchet mean determined using different Riemannian distances
have been used. In this paper, we are primarily concerned
with the following question: Does using the Fréchet mean with
Riemannian distances instead of arithmetic mean in averag-
ing CSP covariance matrices improve the subject-independent
classification of motor imagery (MI)? To answer this question
we conduct a comparative study using the largest MI dataset
to date, with 54 subjects and a total of 21,600 trials of left-
and right-hand MI. The results indicate a general trend of
having a statistically significant better performance when the
Riemannian geometry is used.

I. INTRODUCTION

Brain-Computer Interface (BCI) systems aim to infer
different brain activity patterns of a user as accurately as
possible and translate them into appropriate commands [1].

Most studies use electroencephalography (EEG) signals
generated by the collective action of millions of cortical cells
in the development of BCI systems. The key component
of such BCI systems are the signal processing and classi-
fication methods that allow the extraction of discriminative
features of EEG in which human thoughts are best encoded.
Although there has been significant progress in the field,
most studies still focus on subject-dependent classification
of user mental states from EEG data [2], [3]. A subject-
independent classification of users’ mental states remains
one of the major challenges in designing practical BCIs.
This is due to enormous variability in data; in other words,
EEG distribution is highly variable between different users,

*The work was partially supported by the Nazarbayev University Faculty
Development Competitive Research Grants Program under grant number
021220FD1151.

1Yassawe Kainolda and Amin Zollanvari are with the Electrical and
Computer Engineering Department, School of Engineering and Digital
Sciences, Nazarbayev University, Kazakhstan {yassawe.kainolda,
amin.zollanvari}@nu.edu.kz

2Berdakh Abibullaev is with the Robotics and Mechatronics Department,
School of Engineering and Digital Sciences, Nazarbayev University, Kaza-
khstan berdakh.abibullaev@nu.edu.kz

3Reza Sameni is with the Department of Biomedical
Informatics, School of Medicine, Emory University, GA, USA
rsameni@dbmi.emory.edu

experimental sessions, and even between different trials [4].
As a result, a classifier model trained on one subject’s data
will not generalize to the data of another subject. Such
variability dramatically affects most BCI performances and
requires tedious subject-specific calibration and classifier
modeling. This study focuses on the problem of subject-
independent classification of EEG recordings acquired from
motor imagery (MI) experiments.

Common Spatial Pattern (CSP) is one of the most popular
feature extraction methods for EEG data, which creates a
set of spatial filters that transform the data to be more dis-
criminative in terms of variances [5], [6]. It is instrumental
in the MI paradigm, much of useful EEG features in the
spatial domain, since brain areas responsible for different
limb movements are spatially separated.

CSP works by simultaneously diagonalizing the average
covariance matrices of trials of each class. Most commonly,
average covariance matrices are estimated by arithmetic
averaging. Arithmetic averaging, however, suffers from a
series of problems, the most significant of which is the
swelling effect [7], resulting in the determinant of the average
covariance matrix (which is a measure of the overall scatter
of the samples in the feature space), being much larger
than determinants of individual matrices that comprised the
average. Such a distortion is an undesirable artifact of the
computation. Since covariance matrices are by construction
symmetric positive definite (SPD) and therefore lie on an
SPD manifold, their underlying geometry is better captured
by Riemannian methods [8], [9]. This work applies that
reasoning and compares the results produced by CSP with
arithmetic averaging and CSP with Riemannian means in the
subject-independent classification framework.

The rest of the paper is organized as follows: in Section
II the relevant concepts of the Common Spatial Pattern algo-
rithm and Riemannian geometry will be reviewed, in Section
III the methodology of the experiment will be explained, and
Section IV presents the results of the experiment.

II. BACKGROUND

A. Common Spatial Pattern

Let Xl denote the lth trial data matrix of size C×N where
C is the number of EEG channels and N is the number of
observations. The spatial covariance matrix for each trial is
then

Cl =
XlX

T
l

tr
(
XlXT

l

) , (1)
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where T and tr(.) denote the transpose and trace operators,
respectively. In the case of a two-class paradigm, CSP
performs a linear transformation that maps the data from
the original sensor space to a new surrogate feature space,
in which the variance of one class is maximized while the
variance of the other is minimized [10]. To achieve this
transformation, CSP finds a set of M spatial filters given by
an C ×M matrix W to linearly transform an input signal.
Finding W involves solving the generalized eigenvalue prob-
lem, which involves the class-specific “average” covariance
matrices given by the usual arithmetic mean [10]:

Σi,a =
1

Ti

Ti∑
l=1

Cl, (2)

where i = 1, 2 denote class indexes, Ti is the number of trials
in class i and the subscript “a” is used to denote the use of
arithmetic mean. An input data matrix X is then transformed
as

S = WT
croppedX, (3)

where Wcropped is a matrix of the shape C × (2n), which in
order to achieve the most separability it consists of only the
first and the last n columns of W [10]—it is common to
choose a small value of n (e.g., n = 3). The feature vector
f = [f1, f2, , ..., f2n] is obtained as :

fr = log
var(sr)∑2n
k=1 var(sk)

, (4)

where var(·) denotes the variance and sr is rth row of S,
r = 1, ..., 2n. This feature vector is then used as the input
to a classifier of choice.

B. Riemannian Mean

The use of Euclidean geometry in CSP is manifested
through the arithmetic mean (2) [11]. However, employing
Euclidean geometry in manipulating SPD covariance ma-
trices has multiple drawbacks: 1) it forms a non-complete
space; that is, Euclidean computations in general may lead
to indefinite matrices [12]; 2) arithmetic mean is not invariant
to matrix inversion, which is an undesirable property in some
applications [13]; and 3) it leads to the well-known swelling
effect, which implies the determinant of the arithmetic mean
matrix may become larger than the original determinants [7]
– in data analysis this may add harmful spurious variations
to the data [12].

The aforementioned issues are due to the application of
Euclidean geometry in the space of SPD matrices, which
is a differentiable Riemannian manifold [14]. To overcome
difficulties associated with the arithmetic mean of SPDs in
(2), one may use instead the Fréchet mean (also known as
Riemannian mean) defined as [7]

Σi,r = argmin
C∈P (C)

Ti∑
l=1

δ2r(C,Cl) , (5)

where P (C) is the set of all C×C SPD matrices, C1, ...,CTi

is the set of given SPD covariance matrices for Ti trials,

δr(A,B) is a Riemannian distance between two SPD ma-
trices A and B, and the subscript “r” is used to denote the
use of Riemannian mean. Depending on the choice of scalar
multiplication to equip the tangent spaces, two Riemannian
distances are commonly used: 1) the Log-Euclidian metric
(LEM) [7]; and 2) the Affine-Invariant Riemannian metric
(AIRM) [15].

Formally, for two SPD matrices A and B, LEM distance
δLEM(A,B) is given by [7]:

δLEM(A,B) = ‖ log(A)− log(B)‖F , (6)

where log(A) is the matrix logarithm, ‖A‖F is the Frobenius
norm of A defined as

√
tr(AAT ). Using LEM distance leads

to a closed-form solution for calculating the mean as follows
[7]:

Σi,LEM = exp(
1

Ti

∑
l

log(Cl)), (7)

where exp(·) denotes the matrix exponential. AIRM distance,
on the other hand, is defined as [16]

δAIRM(A,B) = ‖ log(A−1/2BA−1/2)‖F . (8)

In contrast with the LEM distance, the Fréchet mean deter-
mined using AIRM distance has no closed-form solution.
In this regard, optimization methods such as incremental
Fréchet mean estimation can be used to find the mean [17].

III. MATERIAL AND METHODS

A. Dataset

The dataset consists of EEG recordings of 54 subjects
recorded using 62 Ag/AgCl electrodes with a sampling rate
of 1000 Hz. Electrodes were placed according to the inter-
national 10-20 system [18]. The dataset contains two motor
imagery classes: 1) imagined movement of the left hand;
and 2) imagined movement of the right hand. Furthermore,
the dataset is organized in two sessions, where each session
contains 200 trials for each class and subject. For more
information on the experimental protocol, the readers are
referred to [18].

There are in total 21600 trials collected across 54 subjects
in this dataset, which to the best of our knowledge makes
it the largest publicly available EEG MI dataset to date.
For the sake of comparison, there are a total of 5184 trials
across 9 subjects in BCI Competition IV 2a [19] and 10400
trials across 52 subjects in [20] datasets, which have been
frequently used in EEG-based MI studies before [21], [22],
[23].

In our simulations, we used the 20 channels from the mo-
tor cortex region that were used in [18] (FC-5/3/1/2/4/6, C-
5/3/1/z/2/4/6, and CP-5/3/1/z/2/4/6). The placement of these
channels is shown in Fig. 1. The data was further bandpass
filtered within 8-30 Hz using a fifth order Butterworth filter.
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Fig. 1. Electrode placement of the 20 used channels.

B. Methods

Depending on the approach used to compute the class-
specific average covariance matrices, we use and compare the
following three types of CSP feature extraction: I) CSP with
Σi,a computed from (2); II) CSP with Σi,LEM computed from
(7); and III) CSP with Σi,AIRM, which is obtained by using
δAIRM(A,B) in (5). Hereafter, we refer to these methods as
conventional CSP, LEM-CSP, and AIRM-CSP, respectively,
whereas by Riemannian-CSP we refer to both LEM-CSP and
AIRM-CSP.

In order to simulate the subject-independent classification,
we use a Leave-One-Subject-Out Cross-Validation (LOSO-
CV) procedure where we successfully hold out the ob-
servations (trials) collected from each subject, construct a
classifier using the pooled set of observations from the re-
maining subjects, and test the performance of the constructed
classifier on data from the held-out subject. To construct
our classifiers, each training and test observation was trans-
formed into a feature vector using (4) for n = 2, ..., 5. These
feature vectors were used as the input to linear discriminant
analysis (LDA) classifier [24].

IV. RESULTS

Here, we compare the subject-independent classification
performance obtained using the Riemannian-CSP with re-
spect to the conventional CSP. In this regard, we first estimate
the distributions of the difference between the LOSO-CV
classification accuracy obtained using Riemannian-CSP and
conventional CSP (i.e., empirical deviation distribution). The
deviation distributions provide a comprehensive picture of
the conducted comparisons in each setting.

Fig. 2 shows the plots of the empirical deviation distribu-
tion across session 1 and 2 for different n. The plots were
obtained by fitting a beta density to the raw histograms of
classification accuracies estimated using all test observations
for each of the 54 subjects used as part of the LOSO-
CV procedure. Therefore, the density of a point larger
(less) than zero shows the likelihood of an improvement
in classification accuracy equivalent to that point obtained
using the Riemannian-CSP (conventional CSP) with respect
to the conventional CSP (Riemannian-CSP). As a result,
the area of the shaded region (the grey region) in each

density plot is an estimate of the probability of achieving
a higher classification accuracy using the Riemannian-CSP
with respect to the conventional CSP (we simply refer to this
probability as the probability of improvement denoted as PI ).
As we can see in Fig. 2, out of 8 scenarios (2 sessions × 4
values of n) to compare the LEM-CSP and the conventional
CSP, in 7 cases PI > 54% with 4 cases PI > 60%. This
shows a clear advantage of the LEM-CSP with respect to
the conventional CSP. We observe a similar situation when
AIRM-CSP is used. In this case, out of 8 similar scenarios,
in 7 cases PI > 53% with 4 cases PI > 60%.

For a more conventional comparison, for each scenario we
also recorded the the average classification accuracy obtained
across all 54 subjects and for session 1 and 2 (± standard
deviations) in Tables I and II, respectively. As we can see in
these tables, both the AIRM-CSP and the LEM-CSP show a
larger average accuracy than the conventional CSP in 7 out
of 8 scenarios. The results of a paired Wilcoxon signed rank
test show that in 7 and 6 out of 8 scenarios, the improvement
observed by LEM-CSP and AIRM-CSP, respectively, with
respect to the conventional CSP is statistically significant at
a significance level of 0.1 (see Table III).

TABLE I
AVERAGE SUBJECT-INDEPENDENT ACCURACIES FOR SESSION 1 (±

STANDARD DEVIATIONS)

n Conventional CSP AIRM CSP LEM CSP
2 62.04 ± 12.24 % 65.35 ± 13.80 % 65.63 ± 13.87 %
3 62.51 ± 13.06 % 65.56 ± 13.71 % 65.00 ± 13.60 %
4 62.60 ± 13.05 % 65.31 ± 13.96 % 65.11 ± 13.72 %
5 62.83 ± 12.99 % 65.26 ± 14.02 % 64.88 ± 13.58 %

TABLE II
AVERAGE SUBJECT-INDEPENDENT ACCURACIES FOR SESSION 2 (±

STANDARD DEVIATIONS)

n Conventional CSP AIRM CSP LEM CSP
2 66.25 ± 15.62 % 67.05 ± 15.42 % 67.19 ± 15.18 %
3 66.63 ± 15.72 % 67.26 ± 15.34 % 67.34 ± 15.08 %
4 66.05 ± 15.64 % 67.16 ± 14.95 % 67.01 ± 14.73 %
5 67.76 ± 15.24 % 67.07 ± 14.78 % 66.25 ± 14.92 %

TABLE III
OUTPERFORMANCE P -VALUES OF RIEMANNIAN VS CONVENTIONAL

CSPS, FOR SESSIONS 1 AND 2

n
Session 1 Session 2

AIRM CSP LEM CSP AIRM CSP LEM CSP
2 < 0.001 < 0.001 0.041 0.013
3 < 0.001 0.002 0.136 0.089
4 0.006 0.005 0.078 0.097
5 0.004 0.018 0.595 0.955

V. CONCLUSION

In this work, we compared the effect of using the Fréchet
mean with Riemannian distances with respect to the arith-
metic mean in averaging spatial covariance matrices on the
performance of CSP-based subject-independent classifiers of
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Fig. 2. Empirical distribution of the difference between classification accuracies achieved by Riemannian CSP and conventional CSP for Session 1 (from
left to right, columns 1 and 2) and Session 2 (columns 3 and 4). The areas of the shaded and unshaded regions are shown next to the regions. The shaded
region in each plot shows the probability of achieving a higher classification accuracy obtained using the Riemannian-CSP with respect to the conventional
CSP.

motor imagery. Using the largest MI dataset collected to date,
we showed that for a common number of CSP filters, using
the Riemannian mean generally leads to a higher subject-
independent classification accuracy with respect to the arith-
metic mean. However, in this study we did not examine
the effect of dimensionality (number of channels) on the
joint behaviour of Riemannian mean and the classification
performance. It has been previously observed that in subject-
dependent classification, having a large number of channels
is not in favour of Riemannian CSP [25]. Other aspects such
as data completion and robustness to corrupted/missing data
segments also remain as an open problems [26]. We leave
the investigation of these effects in the subject-independent
context for future studies.
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