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Abstract— MR coils are a crucial part in the receiving chain
of an MRI. Their characteristics determine the signal-to-noise-
ratio (SNR) as well as the quality of the illumination of the
volume-of-interest (VOI), which is significantly reduced as the
circumference of the conductor is comparable in size to the
wavelength.
A well-known countermeasure to this is the use of distributed
capacitors on the circumference of conductor loops. Although
this measure is mentioned in numerous works, there is no
systematic framework to correctly determine the values of these
capacitors. In this work a systematic framework for the analysis
of distributed capacitors on conductor loops is established. This
is achieved by a four-pole representation of the circular loop,
which allows for a eigen-mode analysis to determine the correct
values.
Based on the results, an experimental method for determining
the values is derived and validated in workbench measurements.
This provides, for the first time, an easy-to-use method for
determining the correct values of distributed capacitors.

I. INTRODUCTION

MR coils are a crucial part in the receiving chain of
an MRI. Their characteristics determine the signal-to-noise-
ratio (SNR) as well as the quality of the illumination of the
volume-of-interest (VOI).
When the circumference of the conductor loop is comparable
to the wavelength (kb > 0.1, with the wave number k
and loop radius b), the resulting inhomogeneous current
distribution leads to increasingly asymmetric profiles of the
B−1 (See Fig. 1). A well-known countermeasure to this is
the use of distributed capacitors on the circumference of
conductor loops (See Fig. 2). These compensate for the phase
rotation of the current on the circumference and also lead
to a quasi-static field distribution. With regard to transmit
coils, they also lead to a reduced E-field, i.e. a reduced
specific absorption rate (SAR) [1]. Although this measure
is mentioned in numerous works, the author is not aware of
any systematic framework to correctly determine the values
of these capacitors [2], [3], [4]. Consequently, the values used
in some papers appear to be determined heuristically or their
dimensioning is difficult to comprehend [5]. Excepted from
this are existing works on microstrip-line (MTL) coils, where
the positive effect of distributed capacitors on their perfor-
mance has already been addressed, including mathematical
formalism to calculate correct values [6].
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Therefore, the motivation of this work is to establish a sys-
tematic framework for the analysis of distributed capacitors
on conductor loops. For this purpose, an analytical approach
for the description of these conductor loops is developed
and it is shown that the determination of the optimal values
of the distributed capacitors is an eigenvalue problem. It is
demonstrated that this insight provides a procedure for the
experimental determination of the values, too.
The presented method and properties are validated experi-
mentally and by means of numerical EM simulations.
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Fig. 1. Profile of the field beneath a 10 cm loop coil for a 1 A feed and
different frequencies. As kb increases, the profile of the field distribution
moves away from the “quasi-static” ideal.

CM CM

CD

CD

CT

CD

Fig. 2. Typical conductor loop with matching network and distributed
capacitors on its perimeter.

II. THEORY

A. Admittance parameter

To calculate the required values for the distributed
capacitors, a mathematical framework must be found
for the setup in Fig. 2. For this purpose the admittance
matrix was already identified by Harrington et. al. as a
suitable framework [7]. Converting the conductor loop
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into a four-pole representation requires the definition of N
ports on a loop perimeter at ϕn;n = 1 . . . N . At each of
these ports, the quantities Un = U(ϕn) and In = I(ϕn) are
defined according to Fig. 3. The geometry of the loop is
given by it’s center loop radius b and wire radius a. The
corresponding admittance matrix [Y], with the dimension
(N ×N) is given by:


I0
I1
...

IN-1

 =


Y11 . . . Y1N
Y21 . . . Y2N

...
. . .

...
YN1 . . . YNN

 ·


U0
U1
...

UN-1

 (1)
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IN
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Fig. 3. Generalized arrangement describing a conductor loop with
distributed two-ports along the circumference.

The known procedure for the determination of the [Y]-
parameters is used in particular by inserting short circuit
conditions on all but one port of interest. Single parameter
(f.ex. Y12) can be calculated by the input admittance and
current transfer functions [7] as shown below.
Applying the procedure described before Eq. 2 and Eq. 3 are
retrieved to calculate the elements in Eq. (1).

Ynn = YIN (a, b) (2)

Ymn = YIN (a, b) · Im

In
(3)

YIN (a, b) is the input admittance of a loop coil with loop
center radius b and wire radius a (see Fig. 3). Analytical
expressions for YIN (a, b) and ratio Im/In are available from
[8]. These procedure is based on a fourier series evaluation
with the coefficients Z0,n, which are given by [8]:

Z0,n = j2πξ · a0,n (4)

ξ is the free space wave impedance and a0,n can be derived
from the geometrical characteristic of the loop analytically
[9] or by a FFT-based algorithm [10].
If these are inserted into the computational rules for the
main and side diagonals (Eq. (4) & Eq. (3)) and note
that the calculation of the four-pole parameters is a cyclic

permutation Eq. 5 and Eq. 6 are acquired.

Ynn =
1

Z0
+ 2 ·

∞∑
k=1

1

Zk
(5)

Ymn =
1

Z0
+ 2 ·

∞∑
k=1

cos(k · (ϕm − ϕn))

Zk
(6)

As Eq. (6) involves a cos-function, it is deduced that Eq. (6)
and Eq. (5) are the Fourier series of an even function. By
its symmetry one can prove that the Y-matrix is symmetric
along its main diagonal thus leading to Ymn = Ynm.

B. Eigenmode-Analysis

Due to the rotationally symmetrical arrangement of a
conductor loop, it can be assumed that the values of the
distributed capacitors are the same at a constant increment
∆ϕ between all ports. The relation between a port’s current
In and voltage Un is determined by λ

I0
I1
...
IN

 = λ ·


U0
U1
...
UN

 (7)

and by this Eq. (1) is changed to

[Y] · [U] = λ · [U] (8)

. Therefore identifying the optimal values for the distributed
capacitors is reduced to an eigenvalue-problem of the system
matrix [Y]. A (N ×N) matrix contains N eigenvalues, thus
the number of system modes is determined by the number
of ports introduced: λi with i = 0 . . . (N − 1).
Comparing Eq. (7) with Fig. 4 the port admittance YPn re-
quired to obtain mode i can be identified with the eigenvalue
λi by

Y i
Pn = −λi (9)

and the input admittance Y i
IN of the system terminated with

Y i
Pn is

Y i
IN = λi (10)

The analytical calculation of the values of the distributed
capacitors for the case of an equidistant placement of ∆ϕ =
π on the conductor loop is outlined in the next section.

1) ∆ϕ = π: In this case a (2× 2)-matrix is derived

[Y] =

[
1
Z0

+ 2 ·
∑∞
k=1

1
Zk

1
Z0

+ 2 ·
∑∞
k=1

cos(k·ϕ1)
Zk

1
Z0

+ 2 ·
∑∞
k=1

cos(k·ϕ1)
Zk

1
Z0

+ 2 ·
∑∞
k=1

1
Zk

]
, with its characteristic roots given by:

λ0 =
2

Z0
+ 2 ·

∞∑
k=1

(1 + cos(k · ϕk))

Zk
(11)

λ1 = 2 ·
∞∑
k=1

(1− cos(k · ϕk))

Zk
(12)
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Fig. 4. Admittance matrix of the loop (compare Fig. 3) with port
admittance’s YP1, . . . , YPN.

Just one of the two solutions is useful in application, as
it corresponds to the homogeneous mode. To identify the
proper solution the eigenvectors are determined by:

[[Y]− λ · [E]] · [U] = 0.

It can be easily demonstrated that for λ = λ0, U0 = U1
is obtained, which is clearly associated with the required
solution. In contrast to this λ = λ1 is leads to U0 = −U1,
which is obviously maximizing the current variation on the
loop.
The admittance to be used to compensate for any phase shift
of the current distribution along the conductor loop is given
by (λ = λ0):

Y 0
Pn = −

(
2

Z0
+ 4 ·

∞∑
k=1

1

Z2k

)
(13)

In Fig. 5 calculated eigenvalues are shown as function of
normalized wave number kb.

2) ∆ϕ = π/2: In this case a (4× 4)-matrix is retrieved:

[Y] =


Y0 Yπ

2
Yπ Y 3π

2

Y 3π
2

Y0 Yπ
2

Yπ
Yπ Y 3π

2
Y0 Yπ

2

Yπ
2

Yπ Y 3π
2

Y0

 (14)

Y0 =
1

Z0
+ 2 ·

∞∑
k=1

1

Zk

Yπ
2

= Y 3π
2

=
1

Z0
+ 2 ·

∞∑
k=1

cos (k · π/2)

Zk

Yπ =
1

Z0
+ 2 ·

∞∑
k=1

cos (k · π)

Zk

The matrix in Eq. (14) is recognized to be a cyclic matrix,
whose eigenvalues λi and eigenvectors Ui are determined by

[11]:

λi = Y0 + Yπ
2
· wi + Yπ · w2i + Yπ

2
· w3i (15)

Ui =
1√
n
·


1
wi

w2i

w3i

 (16)

, where i = 0, 1, . . . , 3 and w = e
jπ
2 . As before, only i =

0 represents the eigenvalue of the required mode, which is
given by

Y 0
Pn = −

(
4

Z0
+ 8 ·

∞∑
k=1

1

Z4k

)
(17)

The derived formalism allows the analytical calculation of
the required values for distributed capacitors under the con-
dition that they are distributed with a constant increment ∆ϕ
on a conductor loop.

C. Load Dependence

The properties of a coil changes significantly when it is
loaded by the object of interest. Therefore, the question also
arises with respect to the distributed capacitors, whether these
show such a dependence, too.
As the validity of the eigenmode analysis is not touched by
the loading - determining the correct values of the distributed
capacitors is reduced to identifying the new representations
of Zk. According to An et.al. the coefficient in the presence
of a lossy half-plane is identified by correcting Eq. (4) [12]:

Zk = j2πξ · (ak + bk) (18)

The analytically calculated eigenvalues λ0 for several in-
crements ∆ϕ on a circular loop (b = 57.5 mm and a =
1.25 mm) are shown in Fig. 5. For the loaded case a
homogeneous phantom (εr = 80 ; σ = 0.4 S m−1) was placed
below the coil loop in a distance of d = 5 mm .
Fig. 6 shows the relative deviation caused by the presence
of a phantom. It is evident that the deviation for ∆ϕ = π
is further below 5 %, which represents usual component
tolerances. For ∆ϕ = π/2 and ∆ϕ = π/4 this limit is
already reached at kb = 0.3.
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Fig. 5. Eigenvalue λ0 of unloaded (line) and loaded (dashed) coil for
different increments ∆ϕ in dependence of ratio kb.
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D. Experimental Determination

From Eq. (10) and Eq. (9) one can demonstrate that
terminating the input admittance Y 0

IN with Y 0
Pn satisfies the

series resonance condition. The minimized impedance of
the loop is enhancing the inductive coupling to a probe as
depicted in Fig. 7, showing the usual setup the determine
distributed capacitors.
These already established procedure of placing capacitors CD
equidistant in the loop and vary their value until a resonance
is measured at the intended frequency is in good agreement
with the theoretical analysis.

CD

CD

CDCD

P3P1 P2 P4

Fig. 7. Measurement setup to determine the distributed capacitors for a
given conductor loop and target frequency.

III. METHOD

A. Admittance Parameter

To validate the mathematical framework the admit-
tance matrix of a printed circuit loop was calculated
(b = 57.5 mm & w = 2.5 mm) and compared to numerical
EM-simulations (openEMS, ATE - University of Duisburg-
Essen, [13]). As the coefficients a0,n is calculated for a round
wire loop coil, the width w of the PCB-trace has to be
converted to an effective radius by a = w/4 [14].
The admittance parameters were calculated by Eq. (5) and
Eq. (6) with ∆ϕ = π. From this the input impedance of two
configurations could be deduced by means of a short circuit
or open circuit on the second port.
Each configuration was analyzed for the unloaded and loaded
case, where the latter compromised a lossy cylindrical phan-

Y i
P1

y

x

Fig. 8. Coil loop with an admittance Y i
P1 located at ∆ϕ = π.

tom (r = 1.5×b and h = 20 cm) below the coil, with an air
gap in between of height d = 5 mm (εR = 80;σ = 0.46).

B. Eigenmode-Analysis

To demonstrate the eigenmode-analysis the simulation
results of the loaded coil from Sec. III-A were used. The
resulting setup is shown in Fig. 8, with a summary of
parameters to calculate the eigenvalues, as well as their
values in Tab. I.
The coil’s B−1 was calculated along the x-axis (See Fig. 8
dashed line) [15].

w 5 mm kb 0.36

b 57.5 mm ∆ϕ π

Analytical

Im{λ0} −3.1283mS Im{λ1} 2.7478mS

Simulation

Im{λ0} −3.1879mS Im{λ1} 2.9349mS

TABLE I
GEOMETRIC PARAMETERS OF THE CONSIDERED COIL LOOP AND

CALCULATED EIGENVALUES BY EQ. (11) AND EQ. (12) AS WELL AS

EXTRACTED FROM THE NUMERICAL RESULTS.

C. Experimental Determination

The experimental setup is depicted in Fig. 7. A cir-
cular loop with b = 52.5 mm, w = 5 mm and
∆ϕ = π/2 was constructed. The distance to the phantom
(εr = 80 and κ = 0.4 S m−1) was fixed to d = 5 mm.
Optimal values for the distributed capacitors were determined
by the procedure outlined in II-D for the unloaded loop coil
at f = 123 MHz. Measurements of S12 were performed for
the unloaded and loaded loop coil to verify the predicted
resonance.

IV. RESULTS

A. Admittance Parameter

The results of the analytically calculated input impedance
in comparison to simulation are shown in Fig. 9 and 10.
For both configurations (open and short circuit) and different
loading conditions very good agreement is achieved.
Although the analytical framework assumes a infinite half
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plane [12] the impact of an finite phantom volume on the
input impedance is correctly reproduced in terms of damping
and frequency shift.
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Fig. 9. Analytically calculated input impedance of a short circuit (top) as
well as open circuit (bottom) coil loop compared to numerical results.
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Fig. 10. Analytically calculated input impedance of a short circuit (top) as
well as open circuit (bottom) coil loop loaded with a phantom in comparison
to numerical results.

B. Eigenmode-Analysis

In Fig. 11 the results for the application of the admittance
Y i
P1 in numerical simulations are shown in comparison to

the initial case (kb = 0.36). The field profile for the initial
case shows significant non-homogeneous profile, with an
increase of amplitude of 300 % from right to left. For the
homogeneous mode (λ0) a quasi-static field distribution is

obtained, with minimal variation of amplitude along the
profile of 25 %. The so called “Anti-Mode” is received by
applying λ1.
The eigen-values λi calculated analytically and extracted
from numerical results compare very well to each other
(See Tab. I). The deviation for the homogeneous mode λ0 is
much smaller for the anti-mode λ1.
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Fig. 11. Field profiles of a conductor loop for the case of different modes
of current distribution determined by means of an eigenvalue analysis.

C. Experimental Determination

The distributed capacitors on an unloaded loop coil were
calculated analytically to be CD = 26.3 pF utilizing the
formalism outlined in Sec. II-B.
The heuristic procedure outlined in Sec. II-D provided
CD = 27 pF as final result, which fits very well to the
analytical results. The ratio kb = 0.1357 corresponds to
f = 123 MHz and is below the critical limit of kb = 0.3
(see Fig. 6). As demonstrated in Fig. 12 there is no apparent
deviation between the loaded and unloaded coil. Both peaks
are located at f = 123 MHz with a significant drop of
amplitude for the loaded coil.
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Fig. 12. Measurement to check the distributed capacitors.

V. DISCUSSION

The systematic analytical approach differs fundamentally
from comparable rather heuristic works [5]. The presented
method allows the correct analytical description of a con-
ductor loop for the unloaded and loaded state. The for-
malism is based on approaches introduced by Wu et al.
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[9] and has since been modified and extended for different
configurations. For example, Jensen et.al. [16] introduced
modifications which allow the calculation of rectangular or
Huang et.al. [10] coupled conductor loops.
This provides a powerful approach for computing a wide
variety of arrangements in MR receiving coils, and its
applicability has been demonstrated for the first time in this
work. Especially the correct analytical consideration of the
loading allows to extract exact dimensions for components
from this formalism.
Often the components values of a coil are found experimen-
tally or numerically [17] [18]. Although this is a legitimate
way of finding the result, the search space can be reduced
enormously by the presented method and the number of
repetitions can be reduced. The often encountered heuristic
procedure in MR coil design could be greatly simplified in
the case of distributed capacitors.
Since it has been shown that knowledge of the eigenvalues
allows the input impedance to be determined, which can be
expected for the tuning and matching networks of loaded
coils, too. Corresponding investigations and comparisons are
to be carried out next, as well as the consideration of coupled
conductor loops.
The effect of the calculated eigenvalues was investigated
using the field distribution of a single conductor loop in EM
simulations. The insertion of the corresponding admittance
can be used to generate the modes, whereas only the ho-
mogeneous mode seems to be useful in the application. For
electrical large loops (kb > 0.3) inserting the distributed
capacitors is providing a more homogeneous field profile,
compared to the initial setup. But also for kb < 0.3 an im-
provement of the field profiles could be observed. Especially
the center of the conductor loop seems to gain sensitivity.
However, the difference is only < 10 % and therefore might
not play a role in practical application regarding performance
optimization.
Analytical considerations of distributed capacitors for ho-
mogenization of current distribution and consequent im-
provement of sensitivity profiles is so far known only from
microstrip-line (MTL) coils [6]. These insights will be used
in future works to correlate the enhanced field profiles with
sensitive maps of coils in the MR-Imaging. It is expected that
the recorded maps will show a partially better but generally
more homogeneous sensitivity, especially for larger loops.
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