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Abstract— The identification of rare diseases from clinical
notes with Natural Language Processing (NLP) is challenging
due to the few cases available for machine learning and the need
of data annotation from clinical experts. We propose a method
using ontologies and weak supervision. The approach includes
two steps: (i) Text-to-UMLS, linking text mentions to concepts
in Unified Medical Language System (UMLS), with a named
entity linking tool (e.g. SemEHR) and weak supervision based
on customised rules and Bidirectional Encoder Representations
from Transformers (BERT) based contextual representations,
and (ii) UMLS-to-ORDO, matching UMLS concepts to rare
diseases in Orphanet Rare Disease Ontology (ORDO). Using
MIMIC-III US intensive care discharge summaries as a case
study, we show that the Text-to-UMLS process can be greatly
improved with weak supervision, without any annotated data
from domain experts. Our analysis shows that the overall
pipeline processing discharge summaries can surface rare
disease cases, which are mostly uncaptured in manual ICD
codes of the hospital admissions.

Clinical relevance— The text- and ontology-based approach
can largely reduce missing cases in rare disease cohort selection.

I. INTRODUCTION

Rare diseases are those that affect 5 or fewer people in
10,000; there are between 6,000 and 8,000 rare diseases and
they are collectively essential, e.g. affecting approximately
8% of the population in Scotland [1]. Compared to common
diseases, rare diseases are less likely being explicitly coded
because they are under-represented in the current, ICD-10
(International Classification of Diseases, version 10) termi-
nologies [2]. In terms of automated coding, most existing
Natural Language Processing (NLP) models (especially with
deep learning) perform well on the most common diseases
but tend to fail on the long tail of infrequent diseases due to
the lack of instances for training [3], [4]. Also, these NLP
models usually rely on the potentially incomplete codes as
gold standard and overlook the large set of under-coded cases
[5], e.g. for rare diseases.

The key challenge for rare disease identification with
NLP is the lack of annotated data. Annotating a variety of

This work is supported by Health Data Research UK National Phenomics
and Text Analytics Implementation Projects and Wellcome Institutional
Translation Partnership Awards (PIII009, PIII029, PIII032, PIII054).
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Fig. 1. A pipeline for rare disease identification from clinical notes with
ontologies and weak supervision. The upper horizontal lines (in red) show
the proposed pipeline based on clinical notes (e.g. discharge summaries)
and ontologies, including two steps (Text-to-UMLS and UMLS-to-ORDO).
No annotation data are needed, through a UMLS extraction tool, SemEHR,
and weak supervision (WS) based on customised rules and BERT-based
contextual representations (see details on WS in Fig. 2). The lower, dotted
lines show a baseline approach purely based on manual ICD codes, also
enhanced with ontology matching.

rare diseases in clinical notes from scratch requires specific
domain expertise and a very large corpus (to have enough
cases), thus considerable cost and time from a group of
clinical experts. This study proposes a practical and effective
approach leveraging ontologies and weak supervision to
alleviate the burden of annotation.

Ontologies provide viable sources of knowledge as con-
cepts and relations to estimate rare diseases from clinical
notes [6]. In this work, we cast rare disease identification as
entity linking and ontology matching problems, i.e. linking
positive text mentions from clinical notes to concepts in
clinical ontologies. We match mentions to Orphanet Rare
Disease Ontology (ORDO) [7] and use Unified Medical
Language System (UMLS) as an intermediary dictionary to
extend matching terms. The approach is thus comprised of
two integrated parts, as shown in Fig. 1: (i) Text-to-UMLS,
i.e. UMLS concept identification from texts through weak
supervision and (ii) UMLS-to-ORDO, i.e. ORDO concept
identification through ontology matching.

Weak supervision [8], [9] is a strategy to automatically
create weakly labelled training data using heuristics, knowl-
edge bases, crowdsourcing, and other sources, to alleviate
the burden and cost of annotation. In clinical NLP, previous
studies proposed using lexical or concept filtering rules to
create weakly labelled data, then usually represented with
neural word embeddings (and more recently with BERT
[10]), to classify clinical texts [8] into nuanced categories,
e.g. suicidal ideation [11] or lifestyle factors for Alzheimer’s
Disease [12]. We extend the weak supervision process with
customised rules to refine a named entity linking tool to
identify rare diseases. For Text-to-UMLS linking (see Fig.
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1-2), we propose to efficiently create weak training data
of sufficient quality (candidate mention-UMLS pairs) with
two rules, mention character length (regarding ambiguous
abbreviations) and “prevalence” (regarding rare diseases), on
top of a gazetteer-based named entity linking tool, SemEHR
[13]. We further applied a clinically pre-trained BERT [14]
to capture the contexts under-lied in the texts to disambiguate
the mention to improve entity linking.

We tested the whole pipeline using discharge summaries
(n=59,652) in the MIMIC-III dataset [15] and created a large
entity linking dataset (of 127,150 candidate mention-UMLS
pairs) for weak supervision. The weakly trained model was
then evaluated on a gold-standard annotated data of 1,073
mentions. The weak supervision with contextual embed-
ding dramatically improved the precision and F1 scores of
SemEHR with minimum loss of recall, and significantly
improved the approach using the rules alone with the tool.
The proposed approach adapted for rare diseases also out-
performed the recent off-the-shelf tool, Google Healthcare
Natural Language API [16]. Leveraging the linkage from
ICD-9 codes to ORDO concepts, we further show that
the rare disease admission cases identified from discharge
summaries can greatly complement the results from the
manual ICD codes. The overall pipeline has the potential
to prevent missing cases in rare disease cohort selection.

II. METHOD

We describe both the ontology-based approach and the
weak supervision process below.

A. Ontology-based Extraction and Linking

Rare diseases cover a wide range of human phenotypes,
curated in clinical ontologies. ORDO [7] contains the most
comprehensive set of rare diseases with external links to
UMLS, ICD-10, and other ontologies. ORDO was used in
[6] to estimate the frequency of rare diseases in radiology
reports. We further extend this idea by using UMLS as
an intermediary dictionary to leverage its rich synonyms to
improve the coverage of matching to texts.

We applied a UMLS concept extraction tool, SemEHR,
which has been deployed in health data safe havens and
private servers in the UK [13]. SemEHR adapts Bio-YODIE
[17] as its main NLP module with further learning func-
tionalities, e.g. rule- and ontology-based learning, and a
search interface. Bio-YODIE can efficiently extract UMLSs
from texts using a gazetteer-based matching approach. One
issue of both tools, however, is that they assume a strong
prior to assign the same UMLS to the mention regardless
of its context [17]. This can results in many false positive
phenotypes, especially for abbreviations used in clinical
notes. For example in Table I, none of the identified “HD”
mentions contained in the sections indicate a type of disease.

B. Weak Supervision

We propose weak supervision with rules and contextual
embeddings to address the above issues of ambiguous men-
tions. The weak supervision process learns a classifier to

decide whether a mention-UMLS pair in the context indicates
a correct phenotype of the patient.

The idea is to create rules that allow to select the most
reliable subset of mention-UMLS pairs from SemEHR. We
propose mention character length rule and “prevalence”
rule, as illustrated in the blue blocks in Fig. 2. Mention
character length rule selects the mentions having over l
characters (set as 3 in the pipeline), this helps to remove the
abbreviations that are mostly hard to disambiguate, e.g. “HD”
in Table I. The “prevalence” rule retains UMLS concepts that
represent less than a very small percentage (set as 0.5%)
of the whole mention-UMLS pairs, this is based on the
knowledge that rare diseases have low prevalence [1], [18]
and thus low mention frequency in the clinical notes. The
weak labelling function f is defined as True (i.e, mention-
UMLS indicates a correct phenotype of the patient) when
both rules are satisfied and as False when both rules are
not satisfied. This omits the data that are only confirmed by
one rule, which are not enough reliable to be used for weak
supervision. We selected the threshold in both rules to ensure
a sufficient amount of reliable, weak data generated.

A phenotype confirmation model (to filter the candidate
mention-UMLS pairs) can be trained from the weakly la-
belled data. It is important to ensure that the models do not
just learn the rules, but also learn to understand the deeper
context that can indicate a phenotype mention. We thus
propose to use a clinically pre-trained BERT to represent the
contexts of the mention. The representation encodes a context
window of the mention of size k (including the k tokens be-
fore and after the mention, with k set as 5) for classification.
Each context window is in a document structure (or a part of
the template) of a clinical note. We use the heading of the
document structure parsed and named by SemEHR using
regular expressions [13]. To further enrich the contextual
information of a mention, we add the document structure
before the context window with a separation token [SEP]
in between for the representation, similar to the encoding
of a question with a paragraph for the Question Answering
task in [10]. The contextual representation is the average
of the embeddings (e.g. weights in the second-to-last layer
of BERT) of the WordPiece subword tokens of the mention
[10], to be fed into a classification model. Instead of fine-
tuning the whole BERT model, we use logistic regression as
the training model for efficiency, which is similar to adding
a feed-forward layer on top of the pre-trained layers (static)
in BERT with sigmoid activation for binary classification.

III. EXPERIMENTS

A. Data Processing and Annotation

Since a large number of rare diseases (especially for the
genetic disorders) can lead to an ICU (intensive care unit)
admission [18], we used the discharge summaries (n=59,652)
in MIMIC-III (“Medical Information Mart for Intensive
Care”) dataset [15], which contains clinical data from adult
patients admitted to the ICU in the Beth Israel Deaconess
Medical Center in Boston, Massachusetts between 2001 and
2012. The ICD-9 codes for the admissions also allow us
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Fig. 2. Weak supervision process for Text-to-UMLS linking. The left four white text boxes displayed the metadata (with examples) of a candidate
mention-UMLS pair, identified by SemEHR [13]; the coloured text boxes in the middle show the contextual representation block (in green ) and the

rule-based weak data labelling process (in blue ). A binary label is then generated, which weakly estimates whether the candidate pair indicates a correct
phenotype of the patient. A phenotype confirmation model (in grey ) can then be learned to select correct phenotypes from the pairs.

TABLE I
EXAMPLES OF FALSE POSITIVE PHENOTYPES IN THE CANDIDATE MENTION-UMLS PAIRS FROM SEMEHR AND BIO-YODIE

Mention in context window Meaning UMLS by SemEHR UMLS by Bio-YODIE
His temporary HD line was pulled. Medical device

Hundington Disease
(CUI: C0020179)

Hodgkin Disease
(CUI: C0019829)

... male with ESRD on HD ... Procedure: Haemodialysis

... 3. Asacol HD 800 mg Tablet ... Part of medication name
CT scan on HD9 showed ... Hospital Day

to see how free texts can enrich rare disease coding1. The
ontologies and their matchings used are illustrated in Fig. 1.

ORDO contains 14,501 concepts related to rare diseases.
We selected the ORDO concepts which have linkage to
UMLS and ICD-10 in this study as this supports interop-
eration among the clinical terminologies, this resulted in a
set of 4,064 rare disease concepts.

After processing the discharge summaries with a SemEHR
database instance2 [13] with contextual filtering on experi-
encer and negation, we obtained 127,150 candidate mention-
UMLS pairs for the UMLS concepts linked to ORDO. After
applying the weak labelling function with the two rules, we
finally obtained 15,598 positive data instances and 74,217
negative data instances, and 37,248 non-labelled data (and
87 erroneous data during preprocessing). Each data instance
(or mention-UMLS pair) contains the context window of the
mention in a document structure (or template section) of a
discharge summary and the associated UMLS code for the
mention, as shown in Fig. 2.

For evaluation, we created a gold standard dataset3 of
1,073 candidate mention-UMLS-ORDO triplets (with each
mention in a context window), from a set of randomly sam-
pled 500 discharge summaries from MIMIC-III, where 312
(or 62.5%) discharge summaries have at least one candidate
“rare disease” mention. There were in total 95 types of rare

1We linked ICD-9 codes to ICD-10 codes using the matching from
Ministry of Health, New Zealand [19] and linked ICD-9 to UMLS codes
based on the ICD-9 ontology in BioPortal [20], as shown in Fig. 1.

2https://github.com/CogStack/CogStack-SemEHR
3The gold standard rare disease mention annotations from the sample of

MIMIC-III discharge summaries are available at https://github.com
/acadTags/Rare-disease-identification.

disease associated with the mentions. Annotators were asked
to label whether a mention-UMLS pair truly indicates a
phenotype of the patient. The mention-UMLS pairs were an-
notated by 3 domain experts, including a research fellow and
2 PhD students in Medical Informatics (MI). Based on the
random 200 mention-UMLS pairs annotated by all 3 domain
experts, the multi-rater Kappa value was 0.76. ORDO-to-
UMLS concept matching was annotated by 2 domain experts
(a research fellow and a PhD student in MI) and obtained a
Kappa of 0.72. All contradictory and unsure annotations were
resolved by a research fellow in biomedical science and MI.
We used 400 data instances for model validation and the rest
673 for final testing. Since our pipeline is based on weakly
labelled data, none of the gold standard annotations were
used for training. Finally, there were 329 (30.7%) and 146
(13.6%) correct phenotype mentions in UMLS and ORDO
respectively in all 1073 candidate mentions.

B. Implementation Details
We used the open-source tool, bert-as-service4 [21], built

on Google AI’s BERT implementation with Python Ten-
sorflow5 [10], to encode each mention in a raw contextual
window as a vector representation. Specifically, we used the
BlueBERT [14] model pre-trained on MIMIC-III clinical
notes and PubMed abstracts. We then trained a logistic
regression model with the representations, with default con-
figuration using the Python scikit-learn package [22], on the
weakly labelled mention-UMLS pairs.

We evaluated the approach using precision, recall, and F1

scores. We compared the proposed approach (SemEHR+WS)

4https://github.com/hanxiao/bert-as-service
5https://github.com/google-research/bert
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TABLE II
EVALUATION RESULTS ON TEXT-TO-UMLS LINKING

validation (n=400) test (n=673) test, seen in WS (n=499)
i.e. both rules (not) satisfied

test, unseen in WS (n=174)
i.e. only one rule satisfied

Text-to-UMLS linking P R F1 P R F1 P R F1 P R F1

GHNL API [16] 78.9 81.7 80.3 75.3 78.1 76.6 54.3 62.5 58.1 94.1 89.7 91.9
SemEHR* [13] 35.5 100.0 52.4 27.8 100.0 43.5 16.0 100.0 27.6 61.5 100.0 76.1
+ rules 80.9 89.4 84.9 68.6 94.7 79.6 83.3 87.5 85.4 61.5 100.0 76.1
+ WS (rules+BlueBERT, ours) 90.1 89.4 89.8 80.4 92.0 85.8 83.3 87.5 85.4 78.5 95.3 86.1
∗ SemEHR has a perfect reference recall, because all candidate mention-UMLS pairs were originally created using the tool.

with SemEHR with the two rules only using an OR op-
eration (SemEHR+rules), where no weak supervision was
performed. To note that SemEHR had a reference recall of
100% as all candidate “rare disease” mentions were identified
by SemEHR, which was a source of the annotations.

We also compared the results to a third-party tool, Google
Healthcare Natural Language API (GHNL API)6, released on
Nov 2020 [16]. Similar to SemEHR, GHNL API identifies
clinical entities from texts and links them to UMLS and
other ontologies. We assume that the mention-UMLS pair is
predicted as True if the same UMLS concept is detected by
the GHNL API from (a part of) the mention after contextual
filtering (with “certainly assessment” and “subject” values).

C. Results

Table II shows Text-to-UMLS linking results. It can be
observed that with weak supervision (WS), the precision
and F1 has significantly improved by over 50% and 40%
absolute value respectively compared to SemEHR. Adding
the two customised rules can already improve the testing
performance greatly by around 35% testing F1 to SemEHR
(as shown in SemEHR+rules), which validates the efficiency
of the proposed rules with the entity linking tool to create
reliable weak annotations. WS further outperformed the rule-
enhanced approach absolutely by around 10% precision (and
5% F1), showing that the BERT representation helps the
model to filter the false positives by representing the contexts
of a mention. The recall dropped slightly by introducing
the two rules with SemEHR, this suggests that the rules,
while being effective for WS, can still filter out true positive
mentions. Also with WS, the overall approach significantly
outperforms the clinical entity extraction tool, GHNL API,
by over 9% F1. These results together suggest that the
proposed WS approach can successfully adapt and improve a
gazetteer-based tool to a specific domain (e.g. rare diseases).

To analyse the impact of weak supervision on the testing
data, we split the testing data into those “seen” or “unseen”
during weak supervision, based on the rules and weak
labelling function. “Seen” data mean that the mention-UMLS
pairs were weakly labelled with the function f , i.e. with both
rules satisfied or both not satisfied; “unseen” data mean that
only one of the rules was satisfied, thus the data were not
labelled. WS improved the performance of SemEHR in both
settings. While the weakly “seen” data were dramatically

6https://cloud.google.com/healthcare/docs/concept
s/nlp.

boosted by rules (by nearly 50% F1), the “unseen” data
were significantly improved (by 10% F1) through the model
generalised with contextual representations. We also see that
the GHNL API achieved even better precision and F1 for
the weakly “unseen” data (and worse for the “seen” data).

TABLE III
RESULTS ON RARE DISEASE IDENTIFICATION (TEXT-TO-ORDO)

evaluation set (n=1,073)
Text-to-ORDO linking P R F1

GHNL API [16] 45.8 55.5 50.2
SemEHR [13] 15.7 93.8 26.9
+ rules 50.9 81.5 62.6
+ WS (rules+BlueBERT, ours) 63.7 78.1 70.2

Combining the Text-to-UMLS and UMLS-to-ORDO7

modules, the overall rare disease identification results are
presented in Table III. For the whole 1073 evaluation data,
our approach achieved significantly better precision and F1

compared to other methods, with 7.6% F1 above SemEHR
with rules only, and 20% F1 better than the GHNL API.

While rules are effective for WS, they may also introduce
some errors. Our brief analysis of the overall approach shows
that over half (52.2%) of the 67 errors from the Text-to-
UMLS side were due to the bias introduced from the weak
rules. Mentions with negated or hypothetical contexts (rep-
resented 17.9% of the errors) were also challenging for the
algorithm and the annotators. Both issues may be addressed
by combining WS with human-in-the-loop machine learning
[23] with adaptive rules to improve the performance.

After processing all discharge summaries with the overall
pipeline, the overall system finally identified 10,488 (17.6%
of all 59,652) ICU admissions in MIMIC-III associated with
at least one rare disease. There were in total 466 types of
rare disease identified. Through linking admission ICD-9
codes to the ORDO concepts for each admission (see dotted
lines in Fig. 1), we observed that 92.5% (431/466) of the
rare diseases were potentially under-coded for at least one
admission. Fig. 3 shows the admission cases identified for 5
selected rare disease cases (all with perfect admission-level
F1 on the evaluation set). Some rare diseases are likely heav-
ily under-coded, e.g. none (0%) of the 271 Rheumatic Fever
cases and only 4 (3.6%) of the 110 (=4+106) Multifocal atrial
tachycardia cases were coded. This shows the necessity of
using free texts to enrich rare disease cohort selection.

7The UMLS-to-ORDO matching accuracy for the 95 concept pairs was
improved by 1.0% (from 87.4% to 88.4%) with semantic type filtering.
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Fig. 3. Number of rare disease admission cases identified from dis-
charge summaries (n=59,652) in MIMIC-III. The 5 rare diseases of perfect
admission-level evaluation F1 and most number of cases in the evaluation
data are presented. The cases are split into those linked to the admission
ICD-9 codes and those further enriched with free texts.

IV. CONCLUSION

We proposed a practical and effective ontology-based
and weak supervision approach to leverage a named en-
tity linking tool, SemEHR, for rare disease identification
from clinical notes. The results show that weak supervision
with customised rules and contextual representations can
greatly improve the performance, without the annotation
from domain experts. The rare disease cases identified from
discharge summaries can greatly enrich cases identified using
the admission ICD codes. The applied tool, rules, and ontolo-
gies can be adapted and extended to extract information from
other documents. The study was performed using discharge
summaries from ICU in a US hospital. A future study is to
externally validate the approach to reports in other clinical
domains and institutions (e.g. radiology reports in the UK).
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