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Abstract— Previous studies have shown that athletic jump
mechanics assessments are valuable tools for identifying indi-
cators of an individual’s anterior cruciate ligament injury risk.
These assessments, such as the drop jump test, often relied
on camera systems or sensors that are not always accessible
nor practical for screening individuals in a sports setting.
As human pose estimation deep learning models improve,
we envision transitioning biometrical assessments to mobile
devices. As such, here we have addressed two of the most
preclusive hindrances of the current state-of-the-art models:
accuracy of the lower limb joint prediction and the slow run-
time of in-the-wild inference. We tackle the issue of accuracy
by adding a post-processing step that is compatible with all
inference methods that outputs 3D key points. Additionally,
to overcome the lengthy inference rate, we propose a depth
estimation method that runs in real-time and can function with
any 2D human pose estimation model that outputs COCO key
points. Our solution, paired with a state-of-the-art model for
3D human pose estimation, significantly increased lower-limb
positional accuracy. Furthermore, when paired with our real-
time joint depth estimation algorithm, it is a plausible solution
for developing the first mobile device prototype for athlete jump
mechanics assessments.

I. INTRODUCTION

Hewett et al. [1] estimated that in 2001, 646 million
USD was spent every year in the United States on surgery
and rehabilitation for an estimated 38,000 female athletes
with anterior cruciate ligament (ACL) injuries. Furthermore,
female athletes are prone to ACL injuries at 4 to 6 times the
rate of their male counterparts [2].

With these risk profiles in mind, Hewett et al. [1] de-
veloped a screening process to identify athletes with a
higher risk of ACL injuries. Their findings demonstrated that
examining the knee’s coronal angles at initial contact and the
sagittal and coronal angles of the knee at peak contact during
drop jump tests yielded pertinent indicators of ACL injury
risk. In a drop jump test, the subject drops down from a
moderate height and then immediately jumps in the air.

For their biometrical analysis of the athletes, Hewett
et al. completed these evaluations by relying on skeletal
tracking from a motion capture system and identified contact
frames using a force plate. Contact frames are defined as the
frames where the individual’s feet are touching the ground
during the jump assessment. As these biometrical analysis
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systems are costly, the Microsoft Kinect’s skeletal tracking
has been validated as an acceptable, cost-effective substitute
for lower extremity injury screening [3], [4].

While the Kinect is a cost-effective and portable solution
compared to the motion capture system, it requires a power-
ful computer and the Kinect sensor. With the development of
3D human pose estimation models using only RGB video [5],
[6], [7], [8], by avoiding the requirement of a complicated
multi-camera setup or depth sensors, it may be possible to
transition to mobile devices with video capture capabilities
which would make it more accessible to coaching staff and
other parties interested in testing for ACL injury risk. One
such promising Convolutional Neural Network (CNN) model
is Pavllo et al.’s VideoPose3D [5]. VideoPose3D uses two
stages: the first stage involves detecting 2D keypoints using
a 2D detector pre-trained on the COCO 2017 dataset [9]
followed by a second stage that using temporal convolutions
to determine the 3D joint positions.

Since CNN-based 3D pose estimation is very slow, pre-
vious work has also considered real-time approaches to de-
termine accurate 3D positions of joints using simple projec-
tion and trigonometric solutions. For example, Chalangari’s
DeepLEAD [10] uses the 2D joint positions generated by
OpenPose [11] which are then refined using trigonometric
solutions to determine the lower extremity angles of the
knees. This relatively modular solution is flexible in that it
may be paired with alternative 2D joint position estimation
models that can perform inference in real-time, such as
PoseNet [12].

With a particular interest in biometrical analysis to
determine ACL injury risk, the present work aims to
increase the accuracy of the lower limb predictions
of skeletal tracking systems such as VideoPose3D by
adding a post-processing step built on robot model-
ing and inverse kinematics. This technique allows us
to constrain the limbs’ lengths and the joints’ ranges
of motion, resulting in a more predictable and natural

Fig. 1: Proposed pipeline for refining RTJDE or
VideoPose3D 3D keypoint predictions

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 4832



Fig. 2: URDF leg model in PyBullet GUI demonstrating the 4 degrees of freedom.

movement of the legs. In addition, we
investigated techniques of inferring
depth using trigonometric solutions
similar to DeepLEAD. Our technique
differs by estimating the depth of
joints in each frame rather than the
knees’ angles. This approach is ad-
vantageous as we can then apply
our post-processing steps for better
accuracy. Most importantly, this tech-
nique can be paired with any 2D
human pose estimation model that
outputs COCO key points [9] such
as Detectron2 [13] and OpenPose
[11], or lightweight models such as
PoseNet [12]. See Fig. 1 for a di-
agram of our proposed processing
pipeline.

II. METHODOLOGY

A. Calibration Phase and UDRF Model

When running our preliminary trials with VideoPose3D
[5], we observed a mean error for a video of the drop
jump test of 7-12 degrees for sagittal and 2-5 degrees for
coronal angles of the knee when compared to the Microsoft
Kinect. Furthermore, when analyzing the subset of frames
that include just the contact frames, we see much higher error
rates. We observe a mean average error of 25-30 degrees for
the sagittal contact frames, with up to 83% of the frames
differing by more than 30 degrees. Additionally, we observed
a mean average error of up to 15 degrees for the knees’
coronal angle. The lack of accuracy, particularly during the
contact frames, makes it difficult to argue for using in-the-
wild VideoPose3D in our use case. Moreover, the process for
in-the-wild VideoPose3D inference on a current-generation
machine with no GPU (Intel i5 6-core CPU) takes 45-75
minutes for a 10-15 second 1920x1080 color capture at 30
fps.

Another shortcoming of VideoPose3D is that it does not
consider the length of the femur and tibia, nor the range
of motion of each joint when performing inference. By
constraining the lengths of the bones and the joints’ ranges of
motion through a dynamically created model of each leg, we
wish to restrict the lower limbs’ movements to more natural
movements.

To achieve this, we add a calibration stage where we
set some constraints to the subject appearing in the video
capture, similar to that used by DeepLEAD [10]. The video’s
first frame must have the individual standing with their legs
straight in the first frame facing the camera. The 3D inference
on this first frame will give us the measurements of each leg’s
femur and tibia. With these lengths, we define each leg’s
physical characteristics using a Universal Robot Description
Format (URDF) model containing the length of each bone
and the constraints on the range of motion of each joint.
Additionally, for best results, the subject should always face
the camera so that both legs are always visible, consistent

with the drop jump test.
The lower limbs of the body contain three articulations:

hip, knee, and ankle. We disregarded the ankle for our study
as it is not considered an indicator of ACL injury risk. If we
reduce the hip and knee joints to their most straightforward
representations, we can simulate them with two revolute
joints for each articulation—one for the flexion and exten-
sion movements and another which imitates abduction. As
shown in Fig. 2, the first quadrant demonstrates flexion and
extension of the hip joint with constraints -30° < β < 100°.
The second quadrant is an example of abduction of the hip
joint with constraints on the left side: -25° < α < 45° and
the right side: -45° < α < 25°. The third quadrant represents
the flexion and extension of the knee with constraints -150°
< τ < 0°. The fourth shows the joint simulating abduction
of the knee with a constraint on the left side: -20° < θ <
15° and on the right: -15° < θ < 20°.

B. Inverse Kinematics (Post-processing)

To simulate the natural movement of each leg, we apply
inverse kinematics (IK) for each frame to correct the joints’
positions. Inverse kinematics calculates a configuration that
is as close as possible to each frame’s inferred joint position
while retaining the model’s constraints. To do this, we use
PyBullet, which has an inverse kinematic solver where it is
possible to specify multiple end effectors (i.e., knees and
feet) and their target positions [14]. We use an incremental
solution by prioritizing the movement of the hip to first
determine each knee’s target position and then solve for
the joint of the knee to attain the foot’s target position.
Using multiple target positions helps to avoid overreaching.
We frequently observed this phenomenon with the abduction
angle of the knee when solving the IK once for each leg using
the foot as the only end effector.

The final step is the orientation and base position of the
model. Orientation was set at the beginning of each frame by
calculating the orientation vector. This vector is obtained by
taking the difference between the hip and knee positions and
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projecting it onto the floor plane. We then form a quaternion
based on the difference between the current orientation
vector and the orientation vector from the previous frame.
Additionally, we adjust the base position of the model, which
is the anchor of the model, by setting it to the hip position.

C. Real Time Joint Depth Estimation (RTJDE)

In a similar fashion to DeepLEAD, we propose a novel
lower limb depth estimation algorithm using only 2D human
pose estimation and trigonometric identities. The constraints
to the subject during video capture are identical to the
ones indicated for our post-processing steps. Once again, the
length of the femur and tibia are deduced in the first frame
and represented by lfemur and ltibia, respectively. For each
subsequent frame, we determine the perceived femur and
tibia length of each leg, mfemur and mtibia. By assuming
that the hip is the anchor of each leg, we then calculate the
depth of the knee zknee using Equation (1) and the depth of
the ankle zankle using Equation (2). See Fig. 3.

zknee = lfemur ∗ sin(cos−1(
mfemur

lfemur
)) (1)

zankle = ltibia ∗ sin(cos−1(
mtibia

ltibia
))− zknee (2)

Fig. 3: The knee and its associated variables for RTJDE

III. RESULTS

A. Experimental setup

Our subject was a healthy volunteer (Male, 183cm, 22
years old) with no prior history of ACL injuries. The ex-
perimental procedures described in this paper are compliant
with NSERC USRA ethics requirements. The RGB video
was recorded using the Microsoft Kinect v2 sensor placed at
a distance of between 2.5 to 4 meters from the subject. The
color camera produces 30 frames per second video at 1920
x 1080 pixels.

As mentioned previously, the Kinect’s skeletal tracking
serves as our ground truth. After a thorough comparison of
the Kinect’s skeletal tracking data and the corresponding
video, we witnessed some prediction errors during rapid
motion. Particularly, we saw predictions of coronal knee
angles of up to 72 degrees which is incoherent with the

corresponding video frames (e.g., see Fig. 4). Therefore, we
set an upper bound of 20 degrees to the Kinect’s coronal
prediction of each frame.

Fig. 4: Example frame of coronal prediction >72 degrees

As can be seen in Table I, a 2D human pose estimator such
as TensorFlow Lite’s Posenet [12] can deduce 2D human
pose in real-time on modern mobile devices. Additionally,
we observed run-times on our machine of 0.05-0.08 seconds
for 250-300 frame videos when performing depth estimation
with our technique. By combining these two results, we can
conclude that we have a practical and relatively accurate
variant of 2D human pose estimation that can run in quasi-
real-time.

TABLE I: Tensorflow Lite PoseNet Runtime [15]

Device GPU CPU

Pixel 3 (Android 10) 12ms 31ms
Pixel 4 (Android 10) 12ms 19ms
iPhone XS (iOS 12.4.1) 4.8ms 22ms

B. Accuracy
When evaluating our proposed methods, we focused on

the sagittal and coronal view of the knee. As mentioned
previously, these are the main indicators of ACL injury risk.
When discussing error in our experiments, we refer to the
mean difference of degrees of the estimated knee angle from
the Kinect’s skeletal tracking prediction over the motion
sequence.

Table II gives our analysis of the mean error for either all
frames (A)) or just the contact frames (B)) of a motion se-
quence. The contact frames contain the initial contact frame
and the peak contact frame, which are vital to ACL injury
risk assessment. Here, we present results for VideoPose3D,
RTJDE using either Detectron2 (with relatively slow infer-
ence time) or PoseNet (with quasi-real-time running time)
for the input 2D COCO joint positions, and DeepLEAD.
For VideoPose3D and RTJDE we also applied IK for post-
processing to refine the 3D joint position. Since DeepLEAD
directly estimates the sagittal angles for the knees, post-
processing could not be applied.
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For VideoPose3D, for all frames (A), post-processing
results in less error for the left and right sagittal angle pre-
dictions. Indeed, with IK post-processing, for all or contact
frames, VideoPose3D resulted in the least mean error for
the sagittal angle predictions. For the original VideoPose3D,
for all frames, the coronal errors are relatively low at 2-3%.
Applying post-processing actually lead to an increase in the
error of more than double on each side for the coronal view.
This error seems to be caused by some noise in the data
propagated into subsequent frames by inverse kinematics as
it uses past configurations when searching for an optimal
solution for the current frame. For the contact frames (B)),
though, the reverse occurs–the original VideoPose3D had
larger errors, which were greatly reduced by applying IK
post-processing. Indeed, for contact frames, the best overall
performance for both sagittal and coronal angle predictions
were achieved using VideoPose3D with post-processing, but
at the cost of very long inference times.

The performance of RTJDE using Detectron2 roughly
mirrors the performance of VideoPose3D (with and without
using post-processing) with only marginally higher errors.
For RTJDE using PoseNet, for all frames, the performance is
comparable to that of RTJDE using Detectron2. For just the
contact frames, the performance is still comparable except
for larger error for the coronal angle predictions. For RTJDE
with PoseNet, the post-processing step didn’t improve the
average errors for either all frames or just contact frames.

IV. CONCLUSION

Compared to VideoPose3D, RTJDE has three main advan-
tages: 1) it is possible to easily swap in faster human pose
estimation models which output COCO key points, 2) video
can be down-sampled to speed up inference, and 3) the depth
estimation runs in real-time. An advantage over DeepLEAD
is that, instead of calculating the sagittal angle of the knee,
we infer the joint positions, which can then be input to our
post-processing steps for correction.

In this study, developing a methodology to address the
two major problems with current 3D human pose estimation
models, inference rate and accuracy, was addressed.

To our knowledge, this is the first study to demonstrate
that we can begin transitioning from high-end machines and
sensors to mobile devices, which are more accessible and
easy to use, for athlete jump mechanics assessments.
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vol. 158 (S 01), pp. DKOU20–318, Oct. 2020.

[5] D. Pavllo, C. Feichtenhofer, D. Grangier, and M. Auli, “3D hu-
man pose estimation in video with temporal convolutions and semi-
supervised training,” CoRR, vol. abs/1811.11742, 2018.

[6] X. Zhou, Q. Huang, X. Sun, X. Xue, and Y. Wei, “Towards 3D human
pose estimation in the wild: a weakly-supervised approach,” in IEEE
International Conference on Computer Vision, pp. 398–407, 2017.

[7] J. Martinez, R. Hossain, J. Romero, and J. J. Little, “A simple yet ef-
fective baseline for 3D human pose estimation,” in IEEE International
Conference on Computer Vision, pp. 2640–2649, 2017.

[8] P. Chalangari, T. Fevens, and H. Rivaz, “3D human knee flexion angle
estimation using deep convolutional neural networks,” in 42nd Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), pp. 5424–5427, 2020.

[9] T. Lin, M. Maire, S. J. Belongie, et al., “Microsoft COCO: common
objects in context,” CoRR, vol. abs/1405.0312, 2014.

[10] P. Chalangari, “Deep learning and trigonometric adjustment in estima-
tion of lower extremity angles,” Master’s thesis, Concordia University,
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