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Abstract— The myotonic dystrophies (DM1 and DM2) are
dominantly inherited disorders that cause pathological changes
throughout the body and the brain. DM patients have diffi-
culties with memory, attention, executive functioning, social
cognition, and visuospatial function. Quantifying and under-
standing diffusion measures along main brain white matter
fiber tracts offer a unique opportunity to reveal new insights
into DM development and characterization. In this work,
a novel supervised system is proposed, which is based on
Tract Profiles sub-band energy information. The proposed
system utilizes a Bayesian stacked random forest to diagnose,
characterize, and predict DM clinical outcomes. The evaluation
data consists of fractional anisotropies calculated for twelve
major white matter tracts of 96 healthy controls and 62 DM
patients. The proposed system discriminates DM vs. control
with 86% accuracy, which is significantly higher than previous
works. Additionally, it discovered DM brain biomarkers that
are accurate and robust and will be helpful in planning clinical
trials and monitoring clinical performance.

Clinical relevance— Numerous DM patients experience neu-
rological and cognitive effects that significantly influence their
well-being. As new drug trials address the DM neurological
symptoms, there is an urgent need for validated neurological
biomarkers of DM. Further, defining quantifiable neural sig-
natures of DM will help gain better insights into the disease
pathophysiology and can lead to earlier diagnosis and more
targeted treatment.

I. INTRODUCTION

Myotonic dystrophies (DM) are highly variable inherited
disorders that directly impact multiple organ systems includ-
ing the brain. Central nervous system (CNS) manifestations
in DM include decreases in attention, reduced visuospatial
functioning, executive functioning, memory, and social cog-
nition [1]. There is wide phenotypic variability in cognitive
function, and evidence for a progressive component. Dif-
fusion tensor imaging (DTI) shows decreased white matter
(WM) connectivity in children and adults with DM, and mag-
netic resonance imaging (MRI) reveals decreased parietal,
frontal, and temporal resting state metabolism [2]. Currently
there are several experimental drugs being developed to
benefit DM CNS symptoms, yet there are no validated CNS
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outcome measures ready for trials to demonstrate responsive-
ness to treatments.

Each major WM tract in the brain includes different
populations of axons, and their health status can potentially
unravel various cognitive and neurological alterations. Tract
diffusion properties are used in clinical research to infer
the neurobiology of different diseases. Fractional anisotropy
(FA) is widely used to measure WM integrity along the
tracts. FA provides useful information about fiber density
and axonal diameter in WM and a decrease in its value
suggests a loss of fiber tract integrity and WM damage.
Previous studies show that FA values vary substantially
within a tract and DM effects on the brain have little
anatomical specificity [3]. Additionally, DM may strike at
any local positions within the major WM tracts. Hence,
diffusion properties of a tract should be represented with
an array of measurements sampled at equidistant locations
along the tract rather than representing a tract with mean
diffusion measures. Furthermore, the DM characterization
system should be able to learn local and global brain patterns
simultaneously.

The main objective of this work was to design and develop
a DM CNS characterization system to identify unique brain
signatures of DM as neurological biomarkers, with the goal
of identifying a combination of outcome measures for up-
coming clinical trials. Therefore, we proposed a data-driven
automated approach to efficiently identify equivalent WM
structures in individuals with DM and healthy controls and
measure multi-dimensional properties of the WM structures
that are altered in DM patients. One main challenge of the
DM characterization system is the sample size. MRI process
is more complex and expensive than most imaging methods.
Additionally, the prevalence of DM in the general population
is about 1 in 8000 people [4]. Therefore, the size of DM brain
imaging datasets is limited and small.

To deal with a small sample size and the need for both
global and local features, an ensemble system is proposed,
which uses time and spectral contents of FAs calculated
for WM tracts to generate accurate and robust DM char-
acterizations. The proposed method used Bayesian approach
for the fusion function. Comparing to previous works [5],
our method has three significant advantages. First, previ-
ous methods only analyzed global features of WM tracts,
whereas our method uses both global and localized multi-
scale features. Second, previous works only studied a few
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 Fig. 1: Analyzed right tract FA profiles in different views.

number of WM tracts. In this work, 12 WM tracts underwent
a comprehensive analysis. Third, uncertainties in data are
accounted for in this work and instead of representing
features and class labels by deterministic values, they are
treated as probability distribution functions.

This paper is structured as follows. Section II describes
the proposed system and presents details of the evaluation
dataset. In section III the experimental results are presented
and discussed. Lastly, final conclusions are presented in
section IV.

II. MATERIALS AND METHODS

Ensemble systems have been successfully applied in
medicine with the goal of generating more accurate and
robust predictions by combining the approximations of dif-
ferent models. In this work, a Bayesian random forest is
proposed, which randomly samples many trees from a prior
distribution, and subsequently performs a weighted ensemble
of predictive probabilities. Details of each step are explained
below.

A. Data Description and Pre-Processing

DTI scans and MRIs were acquired at the University of
Minnesota (UMN) under an institutional review board (IRB)
approved protocol using a Siemens 3T TIM trio scanner with
a 12-channel receive only head coil [2]. Data was collected
for 62 DM patients (46 DM1 and 16 DM2) and 96 controls.
In this study, subjects had a genetic diagnosis or clinical
diagnosis of DM1 or DM2 and they were between the ages
of 18 and 60 years.

All scans were pre-processed using the reproducible
tract profiles (RTP) methodology [6] at Stanford Univer-
sity. Scan preprocessing and tractography were handled in
Flywheel, a neuroinformatics platform that utilizes Google
Cloud Platform for cloud based analysis [6]. In the pre-
processing phase, each T1w file was aligned to canonical
anterior commissure - posterior commissure orientation us-
ing Vistasoft tool (https://github.com/vistalab/
vistasoft) on a local machine. All scans were denoised
using principal component analysis (PCA) [7] and went
under Gibbs ringing correction [8], Eddy current correction
[9] and bias correction via Advanced Normalization Tools
(ANTs) [10]. FreeSurfer (http://surfer.nmr.mgh.
harvard.edu/) was utilized for segmentation and region
of interest (ROI) placement on each T1w acquisition.

The diffusion data was aligned and re-sliced using dtiInit
and modeling was performed at voxel level to generate the
FA data [6]. Previously determined ROIs were used to define
tract locations using the automated fiber quantification (AFQ)
method [11]. After the tract profiles were defined, individual
tracts were calculated based on voxel-based metrics.

To decrease computational complexity, tracts were sam-
pled along each fiber at 30 equidistant nodes. Diffusion prop-
erties were calculated by taking a weighted average across
all streamlines belonging to each specific tract bounded by
the same two ROIs used for that tract’s segmentation. Each
streamline’s contribution to the average was weighed based
on its Mahalanobis distance from the tract core [11]. This
generated a downloadable file from Flywheel that included
a Tract Profile showing variations along the central portion
of each tract for each participant. Tract Profile data are
composed of various metrics including radial diffusivity
(RD), fractional anisotropy (FA), mean diffusivity (MD), and
axial diffusivity (AD). In this work, FAs were used to study
the white matter tracts.

We conducted a comprehensive analysis of the following
twelve WM tracts: 1) Left Anterior Thalamic Radiation
(LATR); 2) Right Anterior Thalamic Radiation (RATR); 3)
Left Corpus Callosum (LCC); 4) Right Corpus Callosum
(RCC); 5) Left Inferior Longitudinal Fasciculus (LILF);
6) Right Inferior Longitudinal Fasciculus (RILF); 7) Left
Superior Longitudinal Fasciculus (LSLF); 8) Right Superior
Longitudinal Fasciculus (RSLF); 9) Left Arcuate Fascicu-
lus (LAF); 10) Right Arcuate Fasciculus (RAF); 11) Left
Inferior Cerebellar Peduncle (LICP); and 12) Right Inferior
Cerebellar Peduncle (RICP) (see Fig. 1).

The discrete wavelet transform (DWT), a multi-resolution
time-frequency [12] analysis was used to represent the
finer variations in the Tract FA Profiles at various scales.
Daubechies mother wavelet was selected empirically consid-
ering its high correlation with Tract FA Profiles. To decrease
dimensionality, each sub-band is represented by the standard
deviation and mean of the absolute values of the coefficients
in the sub-band and normalized sub-band energy (NSE),
which is calculated by dividing the sub-band energy by the
total energy.

B. Classification using Bayesian Random Forests

This work proposed a new method for the DM charac-
terization task. This method is called the Bayesian stacked
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Fig. 2: Mean of the absolute values of the approximation sub-band level 1 (A1) coefficients. Green, purple, and red represent data from control, DM1,
and DM2 subjects respectively.

random forest (BSRF), in which a set of random forests
(RFs) are trained and applied in a sequential order and
the Bayesian approach is used for the fusion function. The
BSRF is designed based on the posterior probability, and
predictions generated by the ensemble’s classifiers represent
the conditional terms. The first RF at the 0 level has only
access to the WM tract data and RFs at higher levels use the
approximation of the RF at the preceding level as additional
input. This process refines the class decision and allows to
correct errors made by classifiers of previous levels.

Let x be a new subject and yi be the prediction made
by the ith classifier, where 1 ≤ i ≤ B. For the generic
class Ck, the BSRF will assign the class that maximizes the
probability in Eq.1. The conditional probabilities in Eq.1 are
unknown, hence the Bayesian rules are used to approximate
Eq.1 and generate Eq.2. To simplify Eq.2, the denominator is
written as Eq.3. In this equation, M is the number of classes,
which is equal to 3 (Control, DM1, and DM2). A conditional
independence between the predictions of all the classifiers is
assumed, hence Eq. 2 is simplified to Eq. 4. Consequently,
to maximize Eq. 4, the numerator should be maximized with
respect to k.

P (Ck|y1, y2, . . . , yB) (1)

P (Ck|y1, y2, . . . , yB) =
P (Ck)P (y1, y2, . . . , yB |Ck)

P (y1, y2, . . . , yB)
(2)

P (y1, y2, . . . , yB) =

M∑
l=1

P (y1, y2, . . . , yB |Cl)P (Ck)

(3)

P (Ck|y1, y2, . . . , yB) =
P (Ck)

∏B
i=1 P (yi|Ck)∑M

l=1

∏B
i=1 P (yi|Cl)P (Ck)

(4)
If one of the ensemble’s classifiers generates a zero

probability, the max rule is used instead of the product rule
and the class with the maximum probability is selected as
the final class label. This happens in a very rare situation
as WM tracts are modified by the DM in a continuous
way and changes induced by the disease process are also
continuous in FA data. As a result, except for extreme cases,
distinct borderlines between features extracted from FA data
of WM tracts of DM1, DM2, and healthy controls cannot

be identified and the generated probabilities are not zero for
majority of subjects.

TABLE I: Performance indexes of the proposed DM characteriza-
tion system and a previous effort.

DM Characterization System SpcDM SpcCont SenDM SenCont AT

Current Effort 84.90 88.46 74.19 93.75 86.07

Previous Effort [13] 72.11 75.55 70.10 77.31 73.71

III. RESULTS AND DISCUSSION

This section presents the experimental evaluation results
of the developed DM characterization system and compares
current effort with a previous DM characterization system
proposed in [13], which is based on resting state functional
MRI analysis of the same patients used in this study.

The box plots of Fig. 2 show the distributions of one of
the features extracted from the twelve WM tracts and used
for the DM characterization task. These coefficients are the
lowpass representation of the FAs calculated for the twelve
WM tracts. The lowpass representation provides a smoother
form of the FA signals and helps to study the long-term
trend. Detail coefficients (Ds) of FA signals are also used in
this analysis to study the short-term fluctuations caused by
the disease process. The features explained in section II. A
were calculated for the A1-A4 and D1-D4 sub-bands of the
FA signals and were fed to the BSRF classifier.

Fig. 3 shows tract fractional anisotropy profiles for the
left arcuate fasciculus (AF) of DM1 and DM2 patients
included in the UMN dataset. In each plot, the black curve
shows the control mean, and the lighter shades represent the
interquartile range and the 10th-90th percentile range. The
red curve shows FA values along the left AF in an individual
with DM1/DM2. An interquartile range is a measure of
where the bulk of the values lie and the 10th-90th percentile
range is the difference between the 90th and 10th percentiles.
Fig. 3 shows that DM changes in FA occur at specific
positions within the Tract Profile, rather than along the entire
tract.

Table I shows the performance of the proposed DM char-
acterization system and a comparison between the accuracies
obtained in this work and those reported in a previous study
[13], using the same subjects. The developed system was as-
sessed using five different performance measures: sensitivity
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Fig. 3: Tract FA profiles for the left AF tract selected randomly from the UMN samples. The first and second row show samples that are correctly labeled
by the proposed system as DM1 and DM2 respectively. The third row shows samples belonging to DM patients that are incorrectly labeled as controls.

of control and DM (SenCont, SenDM ), specificity of control
and DM (SpcCont, SpcDM ), and total accuracy (AT ). As
Table I shows, the performance of the proposed system is
significantly higher than that of the previous effort. These
results show that neurological biomarkers calculated based
on the WM Tract Profiles (NSE, mean and standard deviation
of the wavelet coefficients) can accurately characterize DM1
and DM2.

IV. CONCLUSIONS
In this work, a novel system was proposed to identify

unique brain signatures of DM as neurological biomarkers,
with the goal of identifying outcome measures for upcoming
clinical trials. The proposed DM characterization system is
based on a Bayesian stacked random forest and Tract Profiles
sub-band energy and considers both long-term and short-
term fluctuations caused by the disease process using wavelet
approximation and detailed coefficients. In addition to the
DM characterization task, this system can potentially pro-
vide multidisciplinary biomarkers that can help unravel our
understanding of fatigue, sleepiness, attention, and circadian
rhythms. We are optimistic that the results of this work can
accelerate pharmaceutical research and, in turn, significantly
help patients with DM.
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