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Abstract— Functional medical imaging systems can provide
insights into brain activity during various tasks, but most cur-
rent imaging systems are bulky devices that are not compatible
with many human movements. Our motivating application is
to perform Positron Emission Tomography (PET) imaging of
subjects during sitting, upright standing and locomotion studies
on a treadmill. The proposed long-term solution is to construct a
robotic system that can support an imaging system surrounding
the subject’s head, and then move the system to accommodate
natural motion. This paper presents the first steps toward this
approach, which are to analyze human head motion, determine
initial design parameters for the robotic system, and verify the
concept in simulation.

I. INTRODUCTION

Positron Emission Tomography (PET) is a prime imaging
modality for neuroscience research because it provides func-
tional imaging of brain activity. Conventional PET scanners
are large pieces of equipment optimized for scanning the
whole body and require subjects to lie still on a scanning
bed. This restriction led to the development of a wearable
PET imaging system, called Helmet PET [1], [2], a concept
that has since been investigated by others. While a wearable
PET imager is ideal for avoiding interference with human
motion, the resulting weight limitation reduces sensitivity,
thereby requiring higher radiotracer dose. A recent review by
Majewski [3], inventor of Helmet PET, indicated that active
mechanical support, through robotics (e.g., Figs. 27-28 in
[3]), could enable use of the heavier detectors (15-20 kg) that
would provide higher sensitivity and therefore reduced dose.

Development of a robotic system to support PET imaging
of the brain during motion requires an understanding of
the motion parameters that would serve as design input for
the robotic system. In this paper, we consider neuroscience
research in human locomotion, performed on a treadmill,
and therefore characterize head motion during walking. We
assume a robotic system such as the one shown in Fig. 1,
where the subject is walking on a treadmill, with the robotic
system supporting the PET imaging ring around the subject’s
head. The subject is wearing a helmet that provides both safety
and facilitates the real-time measurement of head motion. For
example, this motion can be measured by cameras on the
imaging ring tracking markers on the helmet, or by multiple
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Fig. 1. Concept for robot-assisted PET imaging. Left: Subject walks on
treadmill, while robotic system measures head motion and moves imaging
ring to avoid collision; Top-right: Closeup showing PET imaging ring and
helmet. Bottom-right: Top-down view showing AP and ML directions.

string encoders connected between the imaging ring and
helmet.

Once the head position is measured, the robot system
will move the PET imaging ring to keep the head as close
as possible to the ring center. This is primarily to avoid
collision between the imaging ring and helmet because, given
the measured head position, the PET image reconstruction
software will correct for displacements of the head with
respect to the imaging ring. This displacement of the head
is unavoidable due to the latency, or delay, of the robot
system, which is the time elapsed between receiving an
action command and perceiving its consequences in the
real environment [4]. Most robots and electronic devices
exhibit several milliseconds delay, which causes a discrepancy
between the robot end-effector position and the target location.

The contributions of this paper are: (1) an analysis of
human head motion during walking, (2) simulation of robotic
compensation for this head motion, assuming a simple delay
model for the robot, and (3) an exploration of the design
space considering different robot delays and imaging ring
diameters.
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II. METHODS

A. Data Acquisition

1) Motion Capture Data: Full-body motion data from
sixteen healthy control subjects (mean age: 62 years, range:
43-80 years), collected in a previous study [5] [6], were
analyzed. The subjects were recorded during overground
walking in a straight line, captured by a motion capture
system (Motion Analysis, Santa Rosa, CA). Retroreflective
markers were positioned on 45 body landmarks and their 3D
positions, with respect to a fixed world frame, were collected
at a sampling frequency of 60 Hz. The world frame was
defined such that the direction of walking was primarily in
the +X direction, with the +Y direction to the left and the
+Z direction upward. These are illustrated in Fig. 1, with the
X axis represented by AP (Anterior-Posterior), the Y axis by
ML (Medial-Lateral) and the Z axis by UD (Up-Down).

2) Inertial Measurement Unit (IMU) Data: We obtained
acceleration data from eight healthy participants (mean age:
22 years, range: 18-28 years), collected in a previous study
[7] that used seven IMUs (APDM, Portland, OR) placed on
subjects walking on a treadmill, sampled at 128 Hz.

B. Motion Capture Data Analysis

1) Emulating Treadmill Walking: We used one head marker
(LEYE, left side of the front of the head) to indicate head
motion. Because we are interested in head motion during
treadmill walking, we subtracted the motion due to overground
walking, which we estimated by fitting a line to the data from
one body marker at C7 (cervical vertebra). This essentially
models the overground walking as a constant velocity. We
then use equation (1) to calculate the head motion in the
AP and ML directions. It was necessary to correct the ML
measurements because the world frame was not perfectly
aligned with the direction of walking, which led to apparent
drift. The UD direction was not affected and therefore it was
not necessary to subtract the best-fit line.

Phead = PLEY E − Pc7BestFit (1)

We then shifted all the Phead to zero mean, since we are
interested in head motion relative to a nominal center position.

2) Outlier Removal: Outliers are present in the beginning
and end of each data set, corresponding to the times before
and after the subject performed the overground walking. We
identified the start and end of the actual overground walking
as follows, where N is the number of position measurements
in each sample:

1) Identify the maximum positions (in x, y, z) in the middle
60% of the data set, given by 0.2N − 0.8N .

2) Start at sample 0.2N and search toward the beginning
of the data until a position greater than 1.5 times the
maximum is found. Remove all data up to and including
this sample.

3) Start at sample 0.6N and search toward the end of
the data until a position greater than 1.5 times the
maximum is found. Remove all data from this sample
to the end.

3) Estimation of Velocity and Acceleration: The velocity,
Vt, and acceleration, At, were calculated using the central
difference, equation (2), where dt is the sampling period.

Vt =
Pt+1 − Pt−1

2dt
At =

Vt+1 − Vt−1

2dt
(2)

C. IMU Data Processing

We used the acceleration data from an IMU attached to
the forehead, with the +Z direction forward, the +X direction
downward, and the +Y direction toward the left. We rotated
these readings to align with the world coordinate system
defined for the motion capture data.

Because an accelerometer measures both body acceleration
and acceleration due to gravity, we subtracted the mean
acceleration in each direction to eliminate the effect of gravity
as well as any measurement bias. Even though gravity should
only affect the measurement in the downward direction, we
anticipated non-zero mean accelerations in other directions
due to imperfect alignment of the IMU.

D. Comparison of Motion Capture and IMU Data

The purpose of the IMU data is to validate the relevance
of the motion capture data for treadmill motion, considering
that the latter was collected during overground walking. We
compare the accelerometer measurement (after subtracting
gravity) to the acceleration estimated from the position data,
both statistically (e.g., standard deviation, maximum) and via
a Fourier analysis using the Matlab Fast Fourier Transform.

E. Preliminary Robot Design

A recent study [8] of anthropometric measurements shows
that 97.5% of humans have head lengths up to 213 mm in the
AP (anterior-posterior) direction and widths up to 165 mm in
the ML (medio-lateral) direction. Allowing a constant helmet
thickness of 25 mm (1 inch) leads to a helmet of dimension
263 mm x 215 mm. With an imaging ring diameter of 300 mm,
this leads to a radial clearance of 18 mm in the AP direction
and 42 mm in the ML direction.

F. Robot Control Simulation

One simple model for a robot system is a low-pass
filter, which attenuates higher-frequency signals and also
imposes a delay (phase shift). Our analysis (Section III-
B) indicates that the head motion is primarily within the
typical robot bandwidth (1-20 Hz), so we can adopt an even
simpler model of just a time delay. Specifically, we provide
the processed head position data, described above, as the
commanded position to the simulated robot and use the
delayed commanded position as the actual robot position.
We evaluate with different delays to provide guidance into
the requirements and design of the robot system. Our range of
delays is consistent with values reported in the literature. For
example, the actuation delay for a UR5 robot arm (Universal
Robots, Odense, Denmark) is around 70 ms [9].

Subtracting the delayed output from the input indicates the
displacement of the head from the center; to avoid collision
with the imaging ring, this displacement should be smaller
than the clearance between the helmet and imaging ring.
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III. RESULTS

A. Analysis of Human Head Motion

After processing the motion capture data and eliminating
outliers, we calculated the velocity and acceleration using
equation (2). Figure 2 shows a sample plot of motion results
for one human subject. We then plotted histograms of the
acceleration estimated from the motion capture data and
from the IMU, as shown in Fig. 3, to verify that a normal
distribution would be a reasonable model. As mentioned
previously, the IMU data in each direction was shifted to
zero mean; the original means were 2.82 m/s2, 0.25 m/s2

and -9 m/s2 in the AP, ML and UD directions, respectively.
The norm of the mean accelerations is 9.43 m/s2, which
is consistent with gravity (9.81 m/s2) and possibly some
uncompensated bias.

Table I shows the statistics of the motion data for all 16
subjects in the motion capture experiment and all 8 subjects
in the IMU experiment.

Fig. 2. Sample plot of relative head position/velocity/acceleration.

Fig. 3. Histograms for IMU data (top) and Motion Capture data (bottom);
horizontal units are m/s2,vertical axes were normalized to relative probability.

B. Comparison of Motion Capture and IMU Data

The maximums and standard deviations of the accelerations
derived from the motion capture data and from the IMU can be
compared in Table I. The values in the AP and ML directions
are similar; in the UD direction, the values for the motion

TABLE I
MOTION DATA FOR ALL SUBJECTS; VALUES GIVEN ARE RANGE,

STANDARD DEVIATION (SD) AND MAXIMUM.

Motion Capture (N=16) AP ML UD
Pos. Range, mm 67 82 43
Pos. SD, mm 18.8 22 11.3
Vel. Max, mm/s 207 258 228
Vel. SD, mm/s 68.9 111.4 111.6
Acc. Max, mm/s2 5411 5348 8116
Acc. SD, mm/s2 1633 1683 2541
IMU (N=8) AP ML UD
Acc. Max, mm/s2 6578 4004 4200
Acc. SD, mm/s2 1676 1246 1316

capture data (overground walking) are approximately twice
as large as those for the IMU data (treadmill walking).

In addition, we applied Fast Fourier Transforms on the
measured head motion and on the IMU acceleration data, as
shown in Fig. 4. These plots demonstrate that the motion
capture data (processed to remove the effect of overground
walking) and the IMU treadmill data share similar spectral
properties, with most frequencies below 5 Hz.

Fig. 4. Fourier transform of IMU acceleration and Motion Capture position;
plot was truncated at 10 Hz as the amplitudes are insignificant above 10 Hz.

C. Robot Control Simulation

We simulated the effect of using a robot to compensate
for the measured head motion, where the robot was modeled
as a time delay (as in a low pass filter). The motion capture
sampling frequency was 60 Hz (period of 16.67 ms), so we
considered time delays that were multiples of the sampling
period, from 16.67 ms to 166.67 ms. The uncompensated
(residual) head motion was given by the difference between
the measured head position and the robot position (i.e.,
delayed head position). Figure 5 shows the result, in the
AP and ML directions, for a delay of 66.67 ms (4 samples).
The horizontal dashed lines indicate the clearances based
on the preliminary design from Section II-E (18 mm and
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42 mm in the AP and ML directions). Table II shows the
three-sigma uncompensated motion in all three directions
(i.e., where 99.7% of the motions fall within this limit) for
all 16 participants.

Fig. 5. Uncompensated head motion in mm, with robot delay of 66.67 ms,
using measured data from all 16 subjects; horizontal axis is time in seconds.

TABLE II
THREE-SIGMA UNCOMPENSATED HEAD MOTION UNDER DIFFERENT

ROBOT DELAYS

Delay, ms AP, mm ML, mm UD, mm
16.67 4.2 5.8 5.6
33.33 6.8 11.0 10.8
50.00 9.7 16.3 16.0
66.67 12.5 21.6 21.0
83.33 15.3 26.8 25.8

100.00 18.0 32.0 30.4
116.67 20.5 37.0 34.7
133.33 23.0 42.0 38.7
150.00 25.3 46.8 42.3
166.67 27.6 51.6 45.7

D. Design Exploration

Figure 6 shows the required clearances, for the AP and
ML directions, between the helmet and imaging ring as a
function of the robot delay time, where the clearance is based
on the maximum (solid lines) or three-sigma (dashed lines)
uncompensated head motion.

Fig. 6. Design parameters based on maximum (solid lines) and three-sigma
(dashed lines) uncompensated head motions.

IV. DISCUSSION AND CONCLUSIONS

In this study, we analyzed recorded human motion to
enable the design of a robotic system that can support
a heavy imaging ring around a human head, and move

that ring to accommodate normal head motions during
treadmill walking. The primary data consisted of 3D positions
captured during overground walking experiments, adjusted to
emulate treadmill walking. The velocities and accelerations
were computed, and the accelerations were compared to a
secondary data set of accelerations provided by an inertial
measurement unit (IMU) during treadmill walking. The
maximums and standard deviations of the accelerations in the
AP and ML directions were similar, as were the frequency
domain characteristics. The values in the UD direction
showed larger differences, but are less critical for the design
because the imaging ring diameter does not restrict motion
in this direction. Therefore, we conclude that the processed
motion capture data sufficiently represents head motion during
treadmill walking to support the design of the robotic system.
Limitations of this study are that the overground walking and
treadmill walking data were obtained from different subject
populations, and both consisted of healthy volunteers without
neurological impairment.

We then simulated robotic compensation for head motion
by modeling the robot as a time delay. The results indicate
that the preliminary design of a 300 mm diameter imaging
ring, with clearances of 18 mm and 42 mm in the AP and
ML directions, is sufficient for robot delays up to about
100 ms. For larger delays, it would be necessary to increase
the imaging ring diameter to avoid collisions. Our future
work includes evaluation with a physical robot, where the
dynamic performance would be more complex than a fixed
time delay.
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