
  

  

Abstract— Oscillatory activity rising from the interaction 

among neurons is widely observed in the brain at different scales 

and is thought to encode distinctive properties of the neural 

processing. Classical investigations of neuroelectrical activity 

and connectivity usually focus on specific frequency bands, 

considered as separate aspects of brain functioning. However, 

this might not paint the whole picture, preventing to see the 

brain activity as a whole, as the result of an integrated process. 

This study aims to provide a new framework for the analysis of 

the functional interaction between brain regions across 

frequencies and different subjects. We ground our work on the 

latest advances in graph theory, exploiting multi-layer 

community detection. In our multi-layer network model, layers 

keep track of single frequencies, including all the information in 

a unique graph. Community detection is then applied by means 

of a multilayer formulation of modularity. As a proof-of-concept 

of our approach, we provide here an application to multi-

frequency functional brain networks derived from resting state 

EEG collected in a group of healthy subjects. Our results 

indicate that α-band selectively characterizes an inter-individual 

common organization of EEG brain networks during open eyes 

resting state. Future applications of this new approach may 

include the extraction of subject-specific features able to capture 

selected properties of the brain processes, related to 

physiological or pathological conditions.  

I. INTRODUCTION 

Brain activity and functioning can be investigated via 
network science, by means of functional networks in which 
different brain areas are linked according to measures of 
correlation, causality, or other statistical dependencies [1], [2]. 
In the recent years, with neuroimaging datasets becoming 
richer and brain connectivity estimation methods more and 
more informative, the classical tools of network analysis were 
extended to a multi-layer space, where several information can 
be encoded in different layers of a multi-dimensional network 
[3]. This framework allows exhaustive investigations where 
multiple features of brain activity are studied with their 
reciprocal coupling, without aggregating or discarding useful 
data. The different layers can include the properties of the 
brain networks across time, subjects, tasks, or clinical 
conditions and study their coupling.   

Particularly interesting, and mostly unexplored, is the case 
in which the network layers encode functional brain networks 
estimated at different frequencies. In fact, standard analyses 
usually study the different frequencies separately or focus on 
single frequency bands. On the other hand, a multi-frequency 
analysis could lead to a better understanding of the actual brain 
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functioning, which produces oscillations at different 
frequencies simultaneously. In a contextual work [4] brain 
connectivity networks at four frequency bands (α, β, low-γ and 
high-γ) were extracted from MEG data and encoded in a multi-
layer network, returning statistically significant differences in 
the occipital α-band network between subjects with 
schizophrenia and a control group. Functional MRI data were 
also used to build a frequency-based multi-layer network to 
compare schizophrenic subjects with matched healthy subjects 
[5]. Results suggested that the hubs of this network are 
distributed differently between the two groups. Both studies 
support the hypothesis that physiological mechanisms 
underlying brain activity are expressed across - as well as 
within - different frequency domains and suggest that cross-
frequency indices can be used as biomarkers of pathological 
conditions. 

In this work, we aim to show how to use multi-layer 
models to study multi-frequency brain networks derived from 
electroencephalographic (EEG) signals. Compared to fMRI 
and MEG, EEG boasts advantages such as high temporal 
resolution and portability, which allow to analyze a broad 
spectrum of frequencies over a wide range of subjects, clinical 
conditions, and tasks. We aim to investigate the topological 
properties of EEG-based multi-frequency brain networks, 
focusing on their modular structure, a hallmark of brain 
networks, consisting of the presence of communities of 
densely interconnected nodes [6]. Specifically, here we 
propose an approach to explore the relation between 
connectivity at different frequencies and inter-individual 
variability of the brain organization. In fact, uncovering 
common - as well as subject-specific - patterns can be crucial 
for many applications, spanning from the definition of 
biomarkers to the design of biometric systems and brain 
computer interfaces, which are raising the interest of several 
studies in the literature (e.g. [7]).  

To test our approach, we estimated resting state EEG 
networks in a group of healthy subjects by means of a spectral 
multivariate estimator called Partial Directed Coherence. 
Then, we built the multi-layer network and performed the 
subsequent multi-frequency module detection. Finally, the 
modular organization across frequencies was examined 
through indices that determine common patterns among 
subjects, to provide a characterization of the topological 
structure of the healthy brain at rest and to prove the usefulness 
of the proposed approach for multi-frequency modular 
analysis of EEG networks. 
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II. METHODS 

A. EEG recordings and preprocessing  

EEG data were acquired in 45 healthy adults (24 male, age 
26.7±5.2). All the participants gave informed consent prior to 
participation and recordings were approved by the local ethics 
committee. Data were collected at the Neuroelectrical Imaging 
and BCI Laboratory at IRCCS Fondazione Santa Lucia of 
Rome and were also used in [8], [9]. EEG was acquired with 
61 electrodes (placed using the extended 10-20 International 
System) and sampling frequency 200Hz at rest with closed 
eyes (CE) and open eyes (OE) for 60 seconds. Data processing 
included band pass filtering in the range 1-40Hz and artifact 
rejection by means of Independent Component Analysis.  

B. Multi-frequency topological analysis 

1) Multi-frequency network construction. 
Functional connectivity was estimated through Partial 

Directed Coherence, or PDC [10] in the range 1-40Hz (optimal 
order: 19.3±2.95). Significance of functional links was tested 
via asymptotic statistics [11]. For each subject and condition 
(CE, OE) we build a multi-layer functional brain network by 
concatenating the adjacency matrices reporting PDC values 
among the electrodes at each of the 40 frequency bins. Thus, 
we obtained 90 (45 subjects × 2 conditions) multi-layer 
networks of dimensions 61×61×40 (number of electrodes × 
number of electrodes × number of frequency bins). 

2) Multi-frequency community detection. 
We investigated the topological organization of these 

networks through a multi-layer community detection analysis. 
Among the algorithms available for the task, we selected 
genLouvain, which is based on modularity optimization [12] 
and was already proven to be suitable for EEG brain networks 
[13]–[15]. Through a stochastic process, it estimates a partition 
of the network into modules by maximizing the modularity, a 
quality function that quantifies how strongly modules are 
internally connected in comparison with a chance level. We 
iterated the algorithm 100 times for each multi-layer network, 
to statistically evaluate the outcoming topological properties. 
Moreover, as multi-layer modularity optimization depends on 
a resolution parameter ω, which affects the coupling of 
partitions across layers (higher ω-values foster stronger 
coupling), we run the algorithm with three increasing ω-values 
(ω=[0.1, 0.3, 0.5]) chosen in accordance with previous studies 
[15]. To select the most informative among the three resulting 
sets of differently resolved multi-layer partitions, we used a 
criterion based on the physiological division between 
frequency bands. We selected the set in which partitions were, 
at the same time, maximally similar within, and dissimilar 
among, the individual EEG bands, defined for each subject 
according to the Individual Alpha Frequency (IAF) [16]: δ [1, 
IAF-7]; θ [IAF-6, IAF-3]; α [IAF-2, IAF+2]; β [IAF+3, 
IAF+14]; γ [IAF+15, 40Hz]. To this purpose, we exploited the 
Variation of Information (VI) [17], an index of dissimilarity 
between two partitions. VI spans the range [0,1], where the 
lower value indicates identical partitions. For each subject we 
computed the VI between the partitions at different frequency, 
obtaining VI matrices of dimension 40×40, where the entry ij 
denotes the VI obtained comparing the partition at frequency i 
with the one at frequency j. Then, we selected the ω returning 
multi-frequency partitions where VI values were lowest within 
the four bands and highest between them. 

3) Inter-subject variability of the modules 
Downstream the identification of the most physiologically 

informative multi-frequency modular structure, we explored 
the inter-subject variability of the modules across frequencies. 
Again, we used the VI computed between each pair of subjects 
for the same frequency layer as a measure of variability. This 
quantified how the communities are consistent across subjects 
at different frequencies. Finally, we provide a scalp map of the 
communities at the frequency where the consistency is highest. 
To this aim, we exploit consensus clustering [18], to obtain for 
each subject a single partition out of the100 iterations. 

III. RESULTS 

1) Multi-frequency community detection. 
The multi-frequency community detection relative to the 

three ω-values returned three sets of partitions, enclosed in 
matrices of dimension 61×40 (number of nodes × number of 
frequencies), where entries are integers indicating the module 
to which each node belongs. In Figure 1 we report the obtained 
VI matrices, which assess the similarity of the partitions across 
layers. As expected, higher ω values lead to a stronger 
coupling of the partitions across frequencies (for ω=0.5, all 
entries are close to 0). Lower ω, instead, results in partitions 
coherent with the conventional division in bands. Here, the 
entries of the matrix are close to 0 within the bands and 

 
Figure 1. Variation of Information (VI) matrices of a representative 

subject for the two conditions OE/CE (columns) and the three ω-values 
(rows). VI values are reported through a color code in the scale of the 

blues (lowest VI values go in the direction of darkest blue). The black 

grid indicates the classical EEG frequency bands (δ, θ, α, β, γ).  
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increase outside. Thus, for the following analysis, we selected 
the set of partitions obtained with ω=0.1. This result applies to 
all subjects and both OE and CE networks, and it is consistent 
with the guidelines provided in [15]. 

2) Inter-subject variability of the modules. 
Inter-subject variability was analyzed by computing the VI 

pairwise between all subjects for each frequency and then 
averaging these values. Results are reported in Figure 2, where 
the averaged values are reported along frequencies and for 
each iteration of the optimization algorithm. During CE, the 
frequency does not significantly affect the variability of the 
community structure among subjects (values of VI are 
consistent throughout the frequency spectrum). In contrast, 
during OE, we observe that VI values are reduced in a specific 
range of frequencies (around 10Hz, i.e. in the α-band) with 
respect to the rest of the spectrum, meaning that in this range 
partitions tend to be more consistent across subject. 
Specifically, the similarity is maximal around 10 Hz and 
decreases with the distance from this frequency value.  

In Figure 3 we reported the modules most consistent 
among subjects, underpinning the functional networks at 
10Hz. To obtain these common modules we first selected the 
partitions of the 10th layers (100 partitions for each subject, one 
for every iteration of the optimization algorithm). Then, as 
described in the Methods section, we computed consensus 

clustering [18] to obtain a single consensus partition for each 
subject. Finally, we plot on a scalp map only those appearing 
in at least 45% of the group. As a result, in the CE condition 
we obtained 5 consistent clusters among subjects, including (i) 
the frontal, (ii) the parieto-occipital, (iii) the central-left, (iv) 
the central, and (v) the central-right electrodes. During OE the 
spatial distribution of the clusters is similar to CE, except for 
the parieto-occipital module, which results split in two sub-
modules, spanning the posterior-left and posterior-right 
hemispheres, respectively. Moreover, during OE, these 
parietal modules involve also more central and anterior 
electrodes, even if with lower percentages across subjects. 

IV. DISCUSSION AND CONCLUSION 

This work aims to provide a framework where functional 
connectivity of EEG-derived brain networks is analyzed 
taking into account simultaneously the information at different 
frequencies. So far, EEG network analysis consists of focusing 
on single bands separately or aggregating the information 
irrespectively of the frequency content. However, each 
frequency interval contains unique physiological information 
about the brain activity, and at the same time brain oscillations 
are a product of the global brain functioning. The theory of 
multi-layer networks provides the mathematical instruments to 
address this issue. Multi-layer network analysis was 
previously used to see how the topological properties of the 
brain functional networks change in time [19], or among 
subjects [20]. Here we propose a multi-layer framework in 
which layers encode the EEG functional connectivity at 
different frequencies, and we focus on the modular 
organization of the resulting networks. 

The topological analysis we pursued led to partitions of the 
multi-frequency brain networks at rest into physiologically 
informative modules, that have a good overlap with previously 
observed resting state networks [21]. These modules show a 
good consistency within standard EEG bands, while diverging 
at frequencies belonging to different bands. We focused on the 
inter-subject variability of these partitions along frequencies, 
finding that OE networks distinctively show a common pattern 
in an interval centered on 10Hz. This result suggests that the 
frequencies characterizing the condition (the α-band, which 
has a distinctive role in OE and CE resting state) drive a 
consistent topological organization of the healthy brain 
network. Future works will elucidate if similar results can be 
found during specific tasks or in pathological conditions, 
where the proposed method could support deriving prognostic 
indices or biomarkers of the specific pathology.  

The results here reported show how a multi-layer 
community analysis can characterize similar conditions like 
resting states with OE and CE. We found that the α-band 
selectivity of the inter-individual differences is specific of OE 
condition, and showed that the modules characterizing CE and 
OE subtend partially different circuits. The stronger difference 
lies in the occipital area, where the single module observable 
during CE is divided in two hemispheric-specific modules at 
OE. Moreover, while in CE this module is confined in the 
posterior part of the scalp, during OE the two resulting 
modules incorporate also more anterior, spatially non-adjacent 
nodes. We can hypothesize that these antero-posterior circuits 
may subtend attentional processes, active at OE, when visual 
stimuli are processed.  

 
Figure 2. Inter-subject variability along frequencies. For the two 

conditions CE (panel a) and OE (panel b) the images represent the 

average values of VI computed pairwise between all subjects at each 
frequency bin and each iteration of the algorithm. VI values are reported 

through a color code ranging from blue (low VI, similar partitions) to 

yellow (high VI, distant partitions).  
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In conclusion, with this study we aimed to show that EEG 
networks can be successfully used for multi-frequency multi-
layer network analysis. Previous works based on fMRI [5] and 
MEG [4] pointed out the need of integrating cross-frequency 
connectivity information. The use of EEG may open the way 
to future, more clinically oriented studies, exploiting the high 
temporal resolution of the EEG signals to extend analysis to a 
broad frequency spectrum with respect to fMRI, while taking 
advantage of the portability of the EEG instrumentation, which 
is of paramount importance in application at the patients’ 
bedside or in other challenging clinical conditions.    
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Figure 3. Modules resulting from consensus clustering between the 45 subjects at 10Hz, in CE (first row) and OE (second row). The electrodes are colored 

in blue (CE) or red (OE) with an intensity proportional to the number of subjects in which that node belongs to that cluster. 
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