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Abstract— In early stage biomedical studies, small datasets
are common due to the high cost and difficulty of sample
collection with human subjects. This complicates the validation
of machine learning models, which are best suited for large
datasets. In this work, we examined feature selection techniques,
validation frameworks, and learning curve fitting for small
simulated datasets with known underlying discriminability, with
the aim of identifying a protocol for estimating and interpreting
early stage model performance and for planning future studies.
Of a variety of examined validation configurations, a nested
cross-validation framework provided the most accurate reflec-
tion of the selected features’ discriminability, but the relevant
features were often not properly identified during the feature
selection stage for datasets with small sample sizes. Ultimately,
we recommend that: (1) filter-based feature selection methods
should be used to minimize overfitting to noise-based features,
(2) statistical exploration should be conducted on datasets
as a whole to estimate the level of discriminability and the
feasibility of the classification problems, and (3) learning curves
should be employed using nested cross-validation performance
estimates for forecasting accuracy at larger sample sizes and
estimating the required number of samples to converge towards
best performance. This work should serve as a guideline for
researchers incorporating machine learning in small-scale pilot
studies.

I. INTRODUCTION

Machine learning has enabled groundbreaking advances in
the analysis of biomedical signals, images, and omics data
in recent years. Due to the complexity of the physiological
processes that produce these samples, data-driven pattern
recognition techniques are often able to outperform conven-
tional statistical tools [1]. Among the countless applications
for machine learning in biomedical research are detecting
disease biomarkers, monitoring injury rehabilitation, devel-
oping prostheses, and predicting predisposition for injury or
illness.

However, while very large datasets are preferred for ma-
chine learning applications, these are often unattainable in
biomedical studies. Due to the expense associated with data
collection involving human participants or labeling of data
by domain experts, pilot studies with small sample sizes are
commonly used for determining feasibility, securing further
funding, and/or for subsequent sample size planning. The
future of the given projects may therefore hinge on these
preliminary results meaning that, despite the small number
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of samples, performance estimates must reflect the true error
rate of the problem.

Unfortunately, there are very real challenges facing per-
formance estimation with small datasets. The most valuable
measure of a classifier’s performance is its generalization
error, which reflects its performance for samples not seen at
any point during the algorithm’s creation. Simply splitting
the available samples into random groups for training and
testing, however, is generally unsuitable for low sample sizes
[2]. With too few samples used for training, the quality of the
model and its decision rules are weakened. Similarly, with
too few test samples, performance estimates are unreliable.
Hence, more efficient approaches are required to appropri-
ately utilize the limited samples.

Endeavouring to exploit the available data as much as
possible, on the other hand, can result in overly optimistic
performance estimates for a problem. This occurs when the
same or highly related samples that were used for feature
selection, hyperparameter selection, and/or classifier training
are reused for estimating a model’s performance [3], [4],
[5]. This information leakage makes it difficult to detect
and prevent overfitting, where the model learns the noise
in the dataset in addition to, or rather than, truly valuable
patterns [6]. Overfitting can be especially severe with small
datasets since strong spurious patterns may occur by chance,
and perfect or near-perfect accuracy can be achieved by
continually tuning model parameters and hyperparameters to
the available samples. While many researchers are careful
to avoid information leakage in the classifier training step,
information leakage in the other stages of model develop-
ment, especially feature selection [7], can result in similarly
inflated performance estimates.

In this study, simulated datasets were created with vary-
ing degrees of discriminability to investigate performance
estimation in small-sample binary classification problems.
First, the impact of different feature selection techniques was
investigated, based on their ability to identify relevant fea-
tures and provide performance estimates that reflect the true
underlying predictive power of the features. Second, these
same metrics were then used to compare six configurations
for developing and validating models, built on commonly
used holdout, cross-validation, and bootstrapping techniques.
Lastly, these validation configurations were further assessed
using fitted learning curves to evaluate each configuration’s
ability to forecast model performance at larger sample sizes.
Ultimately, the goal of this work is to provide an effective,
data efficient framework for validating classification models
with small sample sizes.
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II. METHODS

A. Data

The data used in this work were simulated, and can be
categorized into four types based on their level of class
discriminability: (1) low, (2) moderate, (3) high, and (4)
varying. Each dataset consisted of two equally sized subsets,
constituting a balanced binary classification problem. Fifty
features per class were randomly drawn from unit variance
Gaussian distributions. Forty of these features were drawn
from the same zero-mean distribution for both classes, rep-
resenting irrelevant features (or noise), while 10 features
were made to be differentiable between the two classes by
increasing the distribution’s mean for only the positive group,
i.e., (1) low, with a 0.1 difference in mean for the positive and
negative class distributions for each feature; (2) moderate,
with a 0.5 difference; (3) high, with a 0.9 difference; and (4)
varying, with differences spanning from 0.1 to 1.0 in steps
of 0.1 for the 10 features.

The size of the datasets ranged across 20 sample sizes:
beginning with 10, samples were added to each dataset in
increments of 10 until 100 samples were reached, and then in
increments of 50 until 600 samples were reached. For each
of the four discriminability cases, an additional dataset of
100,000 samples was simulated to be used for estimating the
true classification ability afforded by the distributions of the
10 discriminative features, with 50% randomly selected for
training and 50% for testing a linear support vector machine
(SVM) classifier.

B. Feature Selection

For the first experimental aim, three feature selection
methods were examined for small sample sizes. First was fea-
ture selection using simple variable ranking, a filter method
that orders features by the value of a scoring function (here,
the 10 highest ranked features according to independent t-
tests). This method is based solely on independent feature
relevance to the class labels so it may not produce optimal
predictors, but it is computationally efficient. A second filter
method, minimum redundancy maximum relevance feature
selection (mRMR), uses a scoring function (a difference of
Pearson correlation coefficients in this work) to sequentially
select features that exhibit high relevance to the binary class
labels but also low redundancy compared to higher ranked
features [8]. Third, sequential forward selection (SFS), a
wrapper method, uses classification accuracy to establish a
well-performing subset of features from the dataset. Suc-
cessively, features are added to the subset that exhibit the
best improvement in accuracy of all remaining features.
In this work, linear SVM classifiers were used to obtain
resubstitution performance estimates for the SFS procedure.

These three methods were assessed using a holdout val-
idation configuration for each of the twenty sample sizes,
repeated for 100 iterations with the varying discriminability
data. Linear SVM classifiers were used to estimate both
training accuracy, for the 80% subset of samples that were
used to train the algorithm, and test accuracy, for the 20%

test set unseen during development or training. The feature
selection methods were further evaluated based on their
ability to identify the truly relevant features, those that were
simulated with real underlying differences rather than those
that exhibited coincidental noise-based differences, based on
the percentage of correctly selected features.

C. Model Validation

For the second experimental aim, six model validation
techniques were considered for assigning samples to training
and test groups. The first two ‘non-nested’ techniques (A
and B) utilized all available samples for model development,
comprised of only a feature selection step in this work, while
four ‘nested’ techniques (C, D, E and F) performed model
development using only training subsets of the data.

A) Leave-one-out cross-validation (LOOCV): model de-
velopment is performed using all samples, then the
model’s performance is evaluated using LOOCV where
one sample is used as the model’s test set and the
remaining samples as the training set. This is repeated
for each of the n samples, shifting the test exemplar
each time, and the final performance estimate is aver-
aged from all samples. The same selected features and
hyperparameters are retained for each surrogate model.

B) Bootstrapping: model development is performed using
all samples, then the model’s performance is esti-
mated using 50 bootstrap subsamples of n samples.
Specifically, bootstrapping performs random subsam-
pling with replacement for establishing the model’s
training set and all remaining samples (those ‘out-
of-bag’) are used as test samples. This procedure is
repeated for several iterations and the out-of-bag per-
formance estimates are averaged across all surrogate
models to determine the final estimate. As with the
LOOCV configuration, the same selected features and
hyperparameters are retained for each surrogate model.

C) Holdout: 20% of samples are randomly selected for
testing, the other 80% are used for both model devel-
opment and training.

D) Nested k-fold cross-validation (Nested 10-CV): sam-
ples are randomly partitioned into k approximately
equal sized groups (in this work, k = 10). In turn, each
group is used as the test set while all remaining groups
are used for model development and training, creating
k surrogate models. The final performance estimate is
the average test accuracy across all surrogate models.
Note that model development is repeated in each
iteration using only training samples.

E) Nested LOOCV: n partitions are used for the nested
cross-validation procedure. Again, model development
is performed independently for each surrogate model.

F) Nested Bootstrapping: n samples are subsampled with
replacement for 50 iterations. Model development is
repeated in each iteration using only training samples.

For each sample size and discriminability level, the six
validation configurations were applied to one hundred itera-
tions of simulated data. The t-test variable ranking method
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was used for feature selection and linear SVM classifiers
were used to estimate classification performance.

D. Learning Curve

For the third experimental aim, learning curves were
used to evaluate the forecasting capability of each of the
validation configurations. The commonly-used inverse power
law model was adopted for this purpose, as in (1) where Y
is the fitted curve, n is sample size, a is the best achievable
error rate, b is the learning rate, and c is the decay rate [9].

Y = (1− a)− b · nc (1)

Briefly, the learning curve fitting procedure is as follows:
1) Randomly select a stratified subset of n0 samples from

the dataset.
2) Apply model development and validation to obtain a

classification performance estimate for the subset.
3) Add m stratified samples to the existing subset and re-

apply model development and validation to estimate
the new performance. Repeat this step until all avail-
able samples have been added, yielding a sequence of
classification performance estimates for sample sizes
n0 to the total number of samples, nmax.

4) Use least-squares regression to fit an inverse power law
to the sequence of performance estimates.

5) Infer the model’s performance at larger sample sizes
from the fitted curve.

For each of the one hundred iterations performed using
varying discriminability data in Section II-C, learning curves
were fit to the first ten measured performance estimates,
ranging in sample sizes from 10 (n0) to 100 (nmax) in
increments of 10 (m) samples. An nmax of 100 was selected
to exemplify a typical small-scale biomedical dataset. The
remaining estimates, ranging in sample sizes from 150 to
600, were used to determine the fit’s root-mean-square error
(RMSE) at larger sample sizes, and thus, the quality of the
forecast. While the value of c was unconstrained during the
fitting procedure, a was bounded between 0 and 1 and b was
made to be positive to enforce the desired convergence to
1− a (the stabilized accuracy).

III. RESULTS AND DISCUSSION

A. Feature Selection

Fig. 1(a) illustrates the average performance of the
three feature selection methods using the holdout validation
method for 100 simulated datasets of varying discriminabil-
ity. The training and test curves are revealing: first, models
built using small sample sizes clearly suffer from training
set overfitting, considering the extremely high training accu-
racies but poor test accuracies. In these cases, generalization
ability can be improved, at least to a certain degree, with the
addition of more training data. This exemplifies the well-
established advantages of larger sample sizes in machine
learning model development. Second, SFS, the wrapper
method, suffered from overfitting more than both the variable
ranking and mRMR filter methods, especially for small
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Fig. 1. (a) Average training and test classification accuracies and (b) per-
centage of correctly selected features using the holdout validation technique
with the feature ranking based on t-test, mRMR, and SFS methods for
sample sizes of 10-600.

sample sizes where a 10%-15% disparity in testing accuracy
was evident. Correspondingly, it can also be observed from
the percentage of correct features selected (Fig. 1(b)) that
SFS was least effective in identifying the features with
true underlying differences, selecting on average over 20%
more random noise features than the filter methods. These
results suggest that filter-based feature selection methods
may be most appropriate in early stage studies with small
sample sizes, and more advanced wrapper-based methods
should be reserved for larger sample sizes. Lastly, the simple
variable ranking technique based on t-tests had the best
performance in this study. This may be due in part to the fact
that the simulated datasets consisted of normally distributed
and uncorrelated features which are ideal conditions for
this method. For complex real-world data where correlated,
non-normal features can be expected, more advanced filter-
based feature selection methods like mRMR, measuring both
relevance and redundancy, may be a better fit.

B. Model Validation

The average classification performance estimates for each
of the six validation techniques over 100 trials are presented
in Fig. 2, for all four levels of dataset discriminability. As in
the comparison of feature selection methods, the proportions
of correctly selected features are also presented.

For the low discriminability case (Fig. 2(a)), the under-
lying predictive power was barely better than random data
(50% for binary classification), exhibiting a true accuracy
of only 56%. With such a small effect, the truly relevant
features can be indistinguishable from noise-based features.
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Fig. 2. (a, c, e, g) Average test accuracies and (b, d, f, h) percentage of correctly selected features for each validation configuration and level of data
discriminability: (a, b) low, (c, d) moderate, (e, f) high, and (g, h) varying. The feature ranking based on t-testing was applied for feature selection and
the linear SVM classifier was used for determining test accuracies.

This was evident during the simulations given the low pro-
portions of correctly selected features with this data, which
remained below 50% across all examined sample sizes and
validation configurations. Due to information leakage during
model development, the non-nested validation techniques,
LOOCV and bootstrapping, yielded highly over-optimistic
performance estimates for this mostly random data. The
problem was most apparent with sample sizes below 100,
but the optimism remained even up to 600 samples. The
nested validation techniques provided much more accurate
performance estimates, better reflecting the large amount of
noise-based features and the low effect size of the truly
differing distributions. For a real-world problem, designers
should therefore perform some initial exploration of the
data to assess the quality of the features for classification.

Data that does not demonstrate a reasonable level of dis-
criminability in an early stage study (considering both the
anticipated learning curve trajectory and the desired end
stage performance) should likely not be pursued further.

The moderate discriminability features provide a more
viable classification problem (Fig. 2(c)). In this case, how-
ever, overfitting was once again evident with the non-nested
configurations. Despite their performance estimates more
closely exemplifying the true accuracy (78.4%) than the
nested configurations for sample sizes less than 200, the
proportions of correctly selected features indicate that these
estimates were based partially on noise-based features. The
four nested configurations, on the other hand, had lower
estimates that converged after only a few hundred samples
to the true accuracy. This is the gradual improvement in
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accuracy expected as the sample size, and therefore the
model’s ability to learn the appropriate features and class
associations, is increased. Since the true underlying accuracy
of a real problem is unknown, and cannot be estimated
without a sufficient number of samples, it may be beneficial
to implement both nested and non-nested configurations to
provide a rough idea of the accuracy range when sample size
is small. A non-nested configuration will almost certainly
experience overfitting and may closely match or exceed the
true accuracy, while a nested configuration will provide a
conservative estimate that is generally lower than or equal to
the true accuracy.

Notably, with the effect sizes of the features increased
to a high discriminability case, all six of the validation
configurations required fewer samples to converge to the true
accuracy (92.4%, Fig. 2(e)). The improved discriminability
enabled the models to better identify the correct features and
exploit useful patterns, with each configuration reaching an
average accuracy estimate within 2% of the true accuracy
by 300 samples. With fewer than 300 samples, incidentally,
all of the validation methods had pessimistic estimates. Even
the non-nested configurations, which still showed evidence
of overfitting at very low sample sizes (< 50 samples), did not
provide estimates that exceeded the true accuracy as they had
in the low and moderate discriminability cases. A real world
dataset, however, may likely consist of features with diverse
effect sizes. This condition was represented by the varying
discriminability case in Fig. 2(g), which exhibited similar
results to the moderate and high discriminability cases.

Regardless of the level of discriminability, certain trends
were evident in the proportions of correctly selected features
(Fig. 2(b), 2(d), 2(f), and 2(h)). The non-nested configura-
tions, LOOCV and bootstrapping, generally yielded the high-
est percentage of correct features among all configurations,
reflecting the increased statistical power afforded during the
feature ranking by utilizing all available samples. However,
this also allowed the model to find the most convenient noise-
based features for the test samples, promoting overfitting and
inflating performance estimates. Of the nested configurations,
the nested LOOCV configuration, which uses all samples
but one for feature selection, was the best at identifying the
appropriate features. This was followed closely by the nested
10-CV and then holdout configurations, which used 90% and
80% of samples for feature selection, respectively. The nested
bootstrapping configuration had the worst performance in
this regard, presumably since it uses the fewest unique
samples for model development and training (on average,
63.2% [2]) and repetitions in the bootstrap subsamples can
emphasize noise-based patterns. This aspect of the bootstrap
procedure explains the more conservative model performance
estimates with the bootstrapping and nested bootstrapping
configurations compared to their cross-validation counter-
parts.

While the level of discriminability of the features was
varied, this work considered only a fixed number of features
that were all drawn from unit standard deviation Gaus-
sian distributions. Assorted feature distributions, correlated

features, and highly disproportionate feature-to-sample size
ratios are expected for many real-world biomedical problems,
so a tailored simulation experiment using dataset-specific
characteristics may be a valuable step for future imple-
mentations. The number of irrelevant features, in particular,
has been shown to greatly disrupt the feature selection
procedure and widen the gap between estimates from the
nested and non-nested frameworks [10]. Further, there are
several additional aspects of a classification model and its
development that can affect performance and performance
estimates. Though this work examined a handful of feature
selection methods, the suitability of the selected algorithms
and techniques for pre-processing, feature extraction, and
classification can have a large impact. Future studies should
incorporate a variety of methods in each of the classification
stages to gain a greater understanding of the effect of these
methods on model validation.

C. Learning Curve

Fig. 3 depicts the fitted learning curves for the averaged
varying discriminability performance estimates from the re-
sults shown in Fig. 2. The non-nested configurations clearly
did not fit well with the inverse power law model and showed
the worst forecasting ability by greatly underestimating per-
formance at higher sample sizes. The nested configurations
performed much better in this regard. Nested bootstrapping,
in particular, provided the best forecasting ability overall
with a mean RMSE of 5.18%. This is, however, the most
computationally intensive method, and its RMSE was not
significantly improved (p > 0.05) compared to the less costly
nested 10-CV and nested LOOCV. Though the holdout con-
figuration was the least computationally intensive method,
it exhibited the highest RMSE for projected performance
of all the nested methods, reaffirming the necessity for
more efficient sample use with small datasets. Hence, the
nested CV configurations provided the best trade-off between
forecasting ability and computation time.

While previous works examining learning curves for sam-
ple size planning have assumed fixed feature sets [9], [11],
the protocol employed in this work incorporated feature
selection to accommodate changes in the optimal feature
set for the model as the sample size was varied. To further
improve the flexibility of the learning curve procedure,
future works should allow the number of selected features
to vary at each sample size as well, since in practice,
the required number will be unknown. Additionally, though
standard techniques were adopted in this work, there are
several other models and fitting procedures that could be
adopted for learning curve analysis [12]. Certain methods
may outperform others given the specific dataset, validation
framework and set of utilized algorithms, so these factors
should be further explored. Likewise, it would be beneficial
to assess the presented techniques with real datasets.

IV. CONCLUSIONS

Ultimately, this work has shown that when sample size is
sufficiently large, the selected model validation techniques
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Fig. 3. Fitted learning curves for the averaged varying discriminability performance estimates using (a) LOOCV, (b) bootstrapping, (c) holdout, (d) nested
10-CV, (e) nested LOOCV, and (f) nested bootstrapping. For each of the 100 datasets, the first 10 points (filled) were used for curve fitting and the final
10 points (unfilled) were used for estimating RMSE. The presented RMSE values were averaged across all 100 datasets.

are largely inconsequential, with all techniques eventually
converging to the same or similar results. When sample size
is small, however, these methods have a much larger impact.
Of all the compared validation configurations, the nested CV
frameworks had the most success in reflecting the true accu-
racy of the selected features. The performance estimates were
limited by the quality of the selected feature sets, however,
which included a large proportion of noise-based features
when sample sizes were low. Hence, simply applying nested
CV to obtain a single performance estimate may not be
adequate, and additional considerations are necessary. First,
rather than wrapper-based techniques, filter-based feature
selection techniques should be used for small sample sizes to
avoid overfitting to irrelevant features. We also recommend
that researchers perform an initial exploration of their early
stage dataset to assess the level of discriminability of the
features, which will aid in the interpretation of performance
estimates and gauge the project’s potential. Lastly, to es-
timate the maximum achievable accuracy of the problem
and the sample size required to reach this accuracy, we
suggest a learning curve fitting procedure using nested CV
performance estimates. These recommendations should serve
as a practical starting point for researchers performing small-
scale feasibility studies and sample size planning.
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