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Abstract— Coronary artery extraction in cardiac CT 

angiography (CCTA) image volume is a necessary step for any 

quantitative assessment of stenoses and atherosclerotic plaque. 

In this work, we propose a fully automated workflow that 

depends on convolutional networks to extract the centerlines of 

the coronary arteries from CCTA image volumes, starting from 

identifying the ostium points and then tracking the vessel till its 

end based on its radius and direction. First, a regression U-Net 

is employed to identify the ostium points in the image volume, 

then these points are fed to an orientation and radius predictor 

CNN model to track and extract each artery till its end point. 

Our results show that an average of 96% of the ostium points 

were identified and located within less than 5mm from their true 

location. The coronary arteries centerlines extraction was 

performed with high accuracy and lower number of training 

parameters making it suitable for real clinical applications and 

continuous learning.  
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I. INTRODUCTION  

Coronary artery disease (CAD) is the most common type 
of heart disease leading to death of more than 365,000 death 
cases in the united states in 2020 [1]. Non-invasive imaging 
techniques, specifically Coronary CT angiography (CCTA), 
are usually preferred as the safest way to visualize the 
coronaries vasculature and assess stenosis or plaques [2] 
[3][4]. However, investigating plaque location and sizes from 
CCTA is a complicated task, that requires considerable 
amount of experience. Therefore, it is prone to subjective 
image interpretation [5][6]. Across the last decade, several 
methods have been proposed to automate the detection and 
quantification of stenosis. While few methods use image 
features and pattern recognition for stenosis detection 
[6][8][9], most of the methods quantify stenosis by accurate 
lumen segmentation and centerline extraction [7][10][11][12]. 
This helps to estimate healthy and diseased lumen diameters 
and enables more quantifications to be calculated upon 
straightening the artery lumen using curved multiplanar 
reformation techniques [5][13]. In these methods (automating 
lumen segmentation and centerline extraction), two main 
approaches can be recognized. The first approach is to 
segment out the full vascular tree (coronary tree in this case) 
structure from the image volume and then extract the 
centerlines of this vessel structure [10][11][7][13]. This 
approach does not require any user input as start or end points 

and is less sensitive for vessels’ discontinuities due to 
pathology or imaging artifacts, but it is more prone to errors 
due to appearance of multiple vessels in the vascular tree and 
the segmentation task is usually more time consuming and 
computationally exhaustive[11][7]. The second approach is to 
start with a point on the artery (placed manually or identified 
automatically) and then track the vessel iteratively based on 
its radius and orientation. This approach is more efficient and 
less prone to errors related to confusions in the vascular tree 
but it usually suffers from any gaps, discontinuities and 
stenoses that might exist in the artery [14].  

Recently, convolutional neural networks (CNNs) became 
popular in the field of medical image analysis [15][16]. 
Several CNN models were proposed to address problems like 
vessel tree segmentation [11][17], landmarks or seed-points 
identification [18][19], and vessel tracking [20][21], which 
resemble different subproblems of the coronary lumen 
segmentation and centerline extraction problem. Specifically 
for the centerline extraction problem, branching points of the 
left and right coronaries, i.e. ostium points, were automatically 
identified using dilated convolutions [22] while the arteries 
centerline were extracted in [23], where a modified CNN that 
uses a dilated kernel over an isotropic image patch to 
determine the direction and radius of the coronary artery at 
any point.  However, the employed models usually have a 
huge number of training parameters, around 1.9 billion 
training parameters, to achieve its reported results. This 
directly limits the application of such models in real clinical 
settings [24][25].  

In this work, we propose a fully automated workflow for 
coronary arteries extraction from CCTA images using deep 
learning. Given a CCTA image volume, we develop a 
regression U-Net model to locate the coronaries ostium points 
by defining major seed points of both; right and left 
coronaries. Seed points are then used as input for our second 
CNN dedicated for centerline extraction process that starts 
from the seed point and terminates at the end of each artery.  
In this model, we a) introduced a tailored weighted loss 
function for the orientation classifier part and b) incorporated 
the vesselness information (in terms of the Hessian eigen 
values) as an extra input for the network (beside the image 
patch) to improve the learning process of the network. The 
proposed models achieve high accuracy with much lower 
training parameters and required computational power. This 
helps the presented models to be more appealing for real 
clinical settings and the continuous learning setups.   
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II. DATASETS 

A. Local Dataset  
Our local dataset was collected and annotated through a 

retrospectives study conducted in Suez Canal University 
hospital. The study was approved by the local institutional 
review board at the Suez Canal University with a waiver of 
informed consent. The dataset consists of 118 CTA scans for 
118 subjects with resolution ranging from  0.36×0.36×0.4 to 
0.5×0.5×0.6 mm3 and fixed pixel size of 256×256. Scans were 
captured at different times from the contrast injection. The 
images were annotated by two expert radiologists (5 and 10 
years of experience). For each case, the region of interest 
(ROI) was defined as the bounding box enclosing the cardiac 
walls inside. The seed points were annotated manually for 
each image in the series in which the coronary branching from 
the aorta appears.  

B. CAT08 Dataset 
 The centerline extraction network was trained over the 

CAT08 dataset publicly available under the Rotterdam 
Coronary Artery Algorithm Evaluation Framework [13]. The 
dataset includes 32 cardiac CTA volumes for 32 cases. Images 
are reconstructed with mean voxel size of 0.32×0.32×0.4 
mm3. The CAT08 organization has split the data into train and 
test sets; where 8 cases had the reference centerline data were 
considered for training; and 24 cases which does not contain 
reference annotations were left for testing. The reference data 
for each case contained the coordinates of the centerline as 
well as the estimated radius of the coronary artery branch at 
this point. Four vessels are annotated for each case which 
respectively are right coronary artery (RCA), left anterior 
descending (LAD), left circumflex (LCX) and the fourth 
artery was an arbitrary side branch of one of the previously 
mentioned arteries.  

III. METHODS 

A. Seed Points Locator 

To identify the ostium points, we used a regression U-Net. 
U-net architecture is well known in medical image 
segmentation problems [24] but being originally designed for 
segmentation tasks, the network has no dense output layer, 
and the output is a mask of the same dimensions as the input 
image. Thus, to fit the regression task; two consecutive 
convolutional layers were added with resolution of 16 and 1 
respectively, and to achieve the desired output; a fully 
connected dense layer with linear activation was added as the 
output layer of the network. The expected output is the x and 
y coordinates of the coronary ostium.  

B. Centerline Extractor 

To extract the coronary arteries’ centerlines, we proposed 

a modified version of the CNN model in [23] where the 

centerline is extracted point by point using an iterative 

workflow. The original model input is a small 3D volume 

(19×19×19 voxels) of the input dataset. The center of the 

input volume is the current point on the centerline. The output 

is the predicted direction to the next centerline point and the 

estimated radius of the artery at the current point. The next 

centerline point is obtained by moving from the current point 

by the estimated radius in the predicted direction. Then, the 

next centerline point is considered as the new current point 

and a new input volume is calculated. The directions are 

discrete orientations in the spherical coordinates.  The CNN 

model consists of 7 convolutional layers and one fully 

connected layer. Each convolution layer is followed by a 

batch normalization layer. The kernel size of the first 5 layers 

is 3 and 1 for the last two layers. The number of kernels is 32, 

32, 32, 32, 64, 64 and (number of directions + 1) respectively. 

The dilation factor for layers 3 and 4 is 2 and 3 respectively. 

All other layers have dilation factor equal to 1. 

The original model uses 500 directions which generate 

1,927,563,895 trainable parameters and was trained using 

50K epochs. Our proposed model uses 180 directions 

(224,866,567 trainable parameters) 250 epochs to achieve 

approximately similar performance. The following 

subsections describe the modifications that applied on the 

original CNN model. 

• Geometric/shape information: 

A unique feature in coronaries appearing in CCTA images is 

its tube (vessel) like morphology, referred to as vesselness 

[25]. Most vesselness calculations includes hessian matrix 

computation, from which eigen values are computed and then 

fed into the vesselness calculations. In our model, we modify 

the CNN to accept a 4-channel input isotropic image patch; 

one channel contains the normal grayscale image intensities, 

while the other three channels contain the eigen values of the 

image in 3D directions. Eigen values are fed barely to the 

network without any further computations in order to give the 

CNN the freedom to extract the vesselness feature from them 

in the optimal way. 

• Weighted Loss Function: 
Instead of the categorial loss function in [23], we introduce a 
weighted loss function that considers the proximity of the 
predicted direction to the ground truth. For each of the 
discrete directions; the cosine of the angle (α) between the 
predicted vector (P) and the discrete directions unit vector 
(Ui) is computed as follows: 
 

𝑐𝑜𝑠 𝛼 = 𝑃 ⃗⃗  ⃗. 𝑈𝑖
⃗⃗  ⃗ 

Then, a weight value is assigned to each direction (i): 
 

𝑊𝑖 = 2 − cos𝛼, 

where Wi values ranges from 3 to 1; where 3 indicates the 
totally opposite direction, and 1 indicates the same direction. 
The network is fed with 3D isotropic image patches. Isotropic 
patch requires resampling the image equally in all dimensions 
to maintain equal voxel spacing. A voxel size of 0.5×0.5×0.5 
mm3 was used to ensure covering a receptive field of 9.5mm 
which is sufficient to cover the widest coronary artery. The 
network stacks dilated convolutional layers by implementing 
an increasing stride between kernel elements to increase the 
receptive field of the kernel and to aggregate many features at 
multiple scales [26], while maintaining linear growth of 
number of trainable parameters. This controlled number of 
parameters avoids costy computations and prevents 
overfitting. The network final output combines orientation 
classification over discrete directions, besides a radius 
regression to estimate the radius. Linear and softmax 
activation functions were used for the regression and 
classification tasks respectively. ReLU activation function 
was employed for the rest of the network.  
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To evaluate the results, both the reference and the 

predicted centerlines are then resampled equidistantly at 

0.03mm and then we calculated the percentage of the 

clinically relevant part of the artery which was predicted 

through the workflow and compared it to the reference 

centerlines manually annotated. 

C. Workflow: 

Figure 1 shows a schematic diagram for the proposed 
workflow. First, the images are fed to the seed points locator 
model which predicts the seed points of right and left 
coronaries. Seed points are then fed to the centerline 
extraction model; where each centerline is tracked starting 
from the input seed point till the end of the vessel when the 
radius remains clinically insignificant (< 0.2mm) for more 
than three iterations. 

 

D. Training Strategy: 

Training of the seed points locator U-Net was performed 
using the local dataset. The subjects were split into 94 
subjects (80%) for training of the network and 18 (20%) 
subjects for validation. Data was fed to the model as 2D 
images with dimensions 256×256 which represents a window 
enclosing the aorta. The target is an array containing the 
locations of the seed point, relative to the enclosing window. 
Adam optimizer with 0.0001 learning rate was used for 
updating weights, and the mean squared error loss was the 
loss function of the model. Data was fed to the model in 
batches of 4. The training elapsed 76 epochs before early 
stopping. For the centerline extractor, the 8 training cases 
given in CAT08 dataset were used as leave-one-out for 
validation. Images of each case were resampled at the new 
voxel spacing of 0.5 and a target of N+1 corresponded to each 
isotropic patch; where N+1 represents N number of directions 
and a radius. We considered 180 discrete directions only due 
to hardware resource limitations. Two CNNs were 
constructed; the first used normal categorical cross entropy 
loss, the second implements weighted loss function besides 
the 4-channel network. Both CNNs were trained for 250 
epochs. Each full training loop lasted on average for 37 hours 
for each of the two models. All CNNs were trained on a 
NVidia GeForce RTX 2070 GPU, 8 GB RAM. 

IV. RESULTS 

The seed points locator was evaluated on the local dataset 

showing an average error of less than 5mm in more than 95% 

of the results. Detailed accuracies are illustrated in Table 1. 
 

Table 1. Ostium Points Locator Performance 

Error LCA RCA 

Less than 2mm 68.3 % 74.1 % 

2 – 5mm 24.4 % 24.0 % 

More than 5mm 7.3 % 1.9 % 
 

The centerline extraction accuracy was assessed using 

CAT08. The average distance between the reference and 

extracted centerline for automatically extracted points that 

are within the radius of the reference centerline (DE) was 

measured for three models. The first has 500 directions and 

50K epoch for training (similar to [23]). The second has the 

same architecture with 180 directions and was trained for 250 

epochs. The third is the proposed model with 180 directions 

and 250 training epochs. The DE for the three models was 

0.23, 0.58 and 0.45 mm respectively. Figure 2 shows 

examples for the straightened vessels results using the 

proposed model. 
 

 
Figure 2. Examples for straightened vessels after centerlines 

extraction 

V. DISCUSSION 

The proposed framework first employs a regression U-Net 

to identify the ostium points then feed these points to 

modified CNN that tracks the artery via estimating its 

orientation and radius. Our results show that modifying the 

loss function to consider the proximity of the predicted 

direction to the ground truth and feeding the vesselness 

information (in terms of the eigen values of the Hessian 

matrix) helps to significantly improves the performance of 

orientation estimation. The proposed model has comparable 

accuracy to the model in [23] with much less utilized 

directions (180 vs 500) and training epochs (250 vs 50K) 

leading to a significantly reduced number of training 

parameters (224,866,567 vs 1,927,563,895, i.e. ~11%). This 

allows the integration of the proposed model in clinical 

settings and opens the opportunity to employ the continuous 

learning framework. 

VI. CONCLUSION 

A fully automated framework for coronary arteries 

centerlines extraction from CCTA images was proposed with 

high accuracy and low number of training parameters that 

makes it suitable for real clinical applications and continuous 

learning.  
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