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Abstract— In this paper we utilize a signal processing
tool, which can help physicians and clinical researchers to
automate the process of EEG epileptiform spike detection. The
semi-classical signal analysis method (SCSA) is a data-driven
signal decomposition method developed for pulse-shaped signal
characterization. We present an algorithm framework to
process and extract features from the patient’s EEG recording
by deriving the mathematical motivation behind SCSA and
quantifying existing spike diagnosis criterion with it. The
proposed method can help reduce the amount of data to
manually analyse. We have tested our proposed algorithm
framework with real data, which guarantees the method’s
statistical reliability and robustness.

Clinical relevance— The effectiveness of our detection model
implementation is achieved by presenting a low false detection
rate (FDR) , which can help physicians to save their time in
visually checking epileptic spikes and also save their device’s
storage space by eliminating the need to store long EEG
recordings.

I. INTRODUCTION

Epilepsy is a prevalent neurological disorder in humans,
by which approximately 1% of the world’s population
suffers[1]. It is characterized by unforced, repeated, and
often draining seizures, which can range from loss of con-
sciousness, jerking movements of arms and legs or brief
lapse of concentration to prolonged and severe convulsions.
They may also have uncontrollable jerking movements of
the legs or the arms. Moreover, epileptic patients may
also have symptoms of staring blankly for a few seconds
during seizure. What’s worse, epileptic activities can cause
several damages , and without rapid treatment, the heart and
brain can become overburdened and permanently damaged,
resulting in death in the worst case. Therefore, timely and
comprehensive diagnosis of seizures are important.

Accurate classification and diagnosis of seizures often
require visual identification and detailed examination of
inter-ictal epileptiform discharges (IED) from experienced
physicians and clinical experts. Several types of signals such
as Electroencephalography (EEG) and magnetoencephalog-
raphy (MEG) can be used to diagnose IED. Both EEG and
MEG are non-invasive testing methods which contains a
wealth of information about the state of a patient’s health, as
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well as the different physiological states of the brain. In this
paper, we will use EEG signal as a source of diagnose IED
for several reasons. From hardware and clinical environment
perspectives, the EEG hardware cost significant lower than
other technics (fMRI, MEG..) and EEG only requires a quiet
room and briefcase-size equipment while MEG recording
requires magnetically shielded room. Due to these factors,
it can be recorded over a long period of time which is useful
for monitoring incidental disorders like epileptic seizures
or discharges which are not permanently present in the
recordings. These EEG recordings are visually inspected for
detecting epileptic spikes and seizures. which are then used
for clinical diagnosis and possible treatment plans.

A major drawback however, is that reviewing them is time-
consuming[2] and therefore the amount of data needed to be
stored is large. Furthermore, the diagnostic yield is relatively
low, partially due to the relative short duration of each routine
EEG recordings. Because of this, multiple routine recordings
are typically required before signs of inter-ictal epileptiform
activity are found[3]. Unfortunately, longer recordings also
result in more time required for visual analysis for EEG
reviewers, a burden that is best avoided. Another challenge
is that, Given that clinical experts have different levels of
training and experience, the need to improve the reliability
by establishing a consensus guideline for EEG interpretation
is also known to exist[4].

As a result, research effort has been devoted for developing
automated spike detection techniques which might help not
only to speed up this process but also reduce the amount
of data to be stored. Also, computerized assistance with
the detection of epilepsy activities can release the burden
of physician diagnosis, and as an added benefit, ensure
more consistency between reviews that will lower inter-rater
variability[4][5]. Considering the existing spike detection
algorithms, a major challenge is to minimize the number
of false detections rate (FDR). If this number is too large,
a reviewer will still be required to inspect most of the data
and automated detection will be of no use. In summary, de-
veloping a practical and reliable system with high detection
accuracy can also be of great interest as well.

We aim at quantifying existing spike detection criterions
and automating epilepsy spike detection process by using
semi-classical signal analysis (SCSA) method as a tool for
feature extraction. Semi-classical signal analysis (SCSA)
method has been introduced for pulse shaped signal analysis
in [6] and has been successfully implemented in different
applications such as blood pressure waveform [7], [10],
[11], [12]. In this paper, we motivate to use SCSA to
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quantify existing epilepsy spike visual inspection criterion.
By extracting features as the input for machine learning
algorithms, we automate the process of spike diagnosis and
save time and efforts for physicians and clinical experts.

II. METHODS

A. Spike detection criterion

Mausby and Gloor proposed a set of spike detection
criterions (visual) [13] [14] for recognizing spike waves:

1) Multiple phases of waves with sharp or spiky mor-
phology (pointed peak with time duration of around
200 ms)

2) Different wave frequencies than the ongoing back-
ground activity

3) Asymmetry of the waveform: The rising phase and
decaying phase have different time duration, with one
significantly faster or slower than the other

4) The transient is followed by an associated after coming
slow wave

5) The presence of the epileptiform discharges disrupts
the background activity

Kural later recalled them[15] and assessed the accuracy
of these IFCN criteria in a clinical validation study, using
a robust gold standard, derived from video-EEG recording
of the patients habitual clinical episode. They’ve found out
criterion (1), (2) and (4) will yield acceptable accuracy.
However, these criterions commonly adapted by clinicians
and experienced experts, have not been quantified by ex-
isting research with automated algorithms. In the following
sections, we will use SCSA as a signal decomposition tool
and extract EEG features based on the existing criterion sets.

B. Semi-Classical Signal Analysis method

In this subsection, we briefly introduce the SCSA method.
A positive signal y(t) is decomposed into a set of L2

2-
normalized squared eigenfunctions of the Schrödinger op-
erator which correspond to the negative eigenvalues. The
reconstructed signal yh(t) is given by the following formula
(refer to [6])

yh(t) = 4h

Nh∑
n=1

κnhψ
2
nh(t), t ∈ R, (1)

where λ = −κ2nh, with κ1h > κ2h > · · · > κnh are the
negative eigenvalues, and {ψ1h, ψ2h, · · · , ψnh} are the corre-
sponding L2

2-normalized eigenfunctions (n = 1, 2, · · · , Nh)
such that

− h2 d
2ψ(t)

dt2
− y(t)ψ(t) = λψ(t). (2)

h is a positive parameter known as the semi-classical
constant. Nh is the number of negative eigenvalues. The
reconstructed spectrum yh converges to the true spectrum
y when h tends to zero. When h increases then the number
of negative eigenvalues increases, which allow to include
more eigenfunctions in the signal representation. A useful
property of the SCSA is that eigenfunctions associated to

large eigenvalues (in absolute value) represent the profiles
of the peaks, whereas the remaining functions provide the
details of the signal and thus for the more oscillating ones,
the noise.

C. SCSA-based EEG feature extraction

In this section, we will analyze the reasoning behind
choosing the SCSA parameters as standard features for the
detection algorithm.

From eq. (2), as h → 0, the eigenvalues assume the
values of the signal y(t). Numerically, the SCSA algorithm
converges under a non-zero value of h, therefore we can
write:

|ymax − κ21h| < ε(h) (3)

where ε(h) > 0 is the resulting error of finite h and
ymax is the maximum value of the signal (in our case,
the maximum of the EEG channel waveform in a specific
frame). Since κ1h is made from an operator which contains
morphological information of the input signal, such a feature
will be significant for the classification, playing possibly the
role of an enhanced criterion (1). Note that the actual feature
is the κ21h since this the one that corresponds to the signal
y(t). To account for the wave duration feature in criterion (2),
we use the arguments of the quasi-classical approximation,
as referred in [16]. Specifically, the eigenfunctions follow a
behavior of [16]:

ψnh(t) ∼ e
i
h

∫ √
y(t)−κ2

nh dt (4)

It becomes clear that near the region of the peak, the first
eigenfunction has an oscillatory behavior which is captured
by the ratio of the κ1h to the value of h. For the remaining
signal characteristics (3)-(5), we use similar arguments to
incorporate the median value of the κnh. Since there is no
direct mapping to these elements, we finalize the feature
vector by adding the value of convergence h and the number
of components Nh. The value of Nh is highly important, as
it additionally encodes the shape information of the input
EEG signal. Mathematically, Nh is approximated by [16]

hNh ≈
1

π

∫ √
y(t)dt (5)

Therefore, the integral of the square-root of the signal can
capture the regions of interest in criterion (3)-(4). The median
of the eigenvalues is mainly dedicated to criterion (5). In
fig. 1, a random frame of EEG and its respective SCSA
representation is depicted. Additionally, the first SCSA com-
ponent (under proper scale) and the squared eigenvalues are
present, to indicate the motivation behind choosing the SCSA
parameters for the feature vector. The resulting feature vector
becomes:

f = [h Nh κ1h κ
2
1h med(κ1h) med(κ21h)

κ1h
h

med(κnh)
h

]T

(6)
where med(κnh) is the median of the κnh. After applying
process of reducing the number of features in f , we derive:

foptimum = [h Nh κ1h med(κ1h) ]T (7)
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Fig. 1. Examples of Interictal Epileptiform Discharges (IED) in patient
ID EPI002 (segment1) Upper: A sliding window containing an epileptic
spike (positive frame). Lower: Zoomed-in example EEG channel and SCSA
decomposition.

Regarding the value of h, the numerical implementation
of SCSA will attempt to minimize the function

||y − yh||22 (8)

As explained in [16], the convergence time of SCSA can be
high and the value of hmin appeared to provide equally good
results. For this exploration, we will use that specific value,
which is:

hmin =
1

π

√
ymax (9)

D. Algorithm frameworks

1) EEG signal framing: The multi-channel EEG signals
are segmented into frames using sliding windows, where
a sliding segment of size 250 sample points (0.5 seconds)
with step = 10 samples as shown in fig. 1. The frames are
classified into positive and negative as follows:

• Positive frame: A positive frame includes one or more
epileptic spikes in a single frame of 21 channels of the
4 epileptic patients.

• Negative frame: A negative frame includes no epileptic
spikes in a single frame of 21 channels of the 4 epileptic
patients.

2) Feature extraction: In each sliding window (frame),
there is a two-stage process of extracting features. In the first
step, suppose there are mi number of peak events related to
the ith channel. In the ith channel, noting the prominence1 of
the kth peak activity as Pk and the maximum of prominence
as max(Pk) with index pmax−i, we select a channel according
to the following: (in the average(Pk) term, k 6= pmax−i)

Channel-Index = argmax
i

max(Pk)
average(Pk)

(10)

In the second step, we use Channel-Index to extract the
corresponding EEG segment where SCSA is applied to
extract features foptimum according to eq. 7.

3) Classification models: As adapted by most studies
regarding this topic, supervised machine learning is intro-
duced. We adapt linear support vector machine (SVM) as the
learning model. Features are extracted using semi-classical
signal analysis (SCSA) tools. We will test our algorithms
against real database to guarantee statistical reliability.

4) Evaluation: The 5-fold performance of the classifica-
tion model has been measured using the average of accuracy
defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

where true positive (TP) is the number of positive frames
determined by both the model and experienced clinical
experts, false negative (FN) is the number of positive frames
missed by the model but determined by experienced clinical
experts, true negative (TN) is the number of negative frames
recognized by both the model and experienced clinical ex-
perts, and false positive (FP) is the number of negative frames
recognized as spikes by the model but not by experienced
clinical experts.

Fig. 2. Classification algorithm framework: EEG records pre-processing,
feature generation (containing channel selection and SCSA analysis), ref-
erence extraction (extract positive and negative frames for the whole EEG
recording, given specific frame size and step size) and classification models

III. EXPERIMENTS

A. EEG data acquisition and pre-processing
EEG data recorded from patients with epilepsy in KFMC

MEG Unit were used. All patients were diagnosed and

1For more information of the measurement of peak prominence: https:
//www.mathworks.com/help/signal/ug/prominence.html
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managed according to the established standards of care. They
were admitted to KFMC’s epilepsy monitoring unit and un-
derwent comprehensive clinical and neurological evaluation,
long-term video-electroencephalography (EEG) monitoring.
EEG signals were visually inspected to identify and remove
noisy channels and time periods. EEG signals were further
digitally band-pass filtered between 0.3 Hz and 70 Hz, with
a notch filter at 60 Hz to remove the power-line noise.
The resultant, cleaned data were visually inspected in 10-
second windows to identify and manually mark the interictal
epileptiform discharges (IEDs) spikes and sharp waves.

B. Results and discussion

We tested our model (shown in fig.2) on 4 different
patients’ EEG recordings with 15-30 minutes duration. The
obtained accuracy is higher than previous SCSA’s application
on MEG data analysis[17]. Considering the computational
complexity aspect, the algorithm is of orders faster than [17].
This can be explained as the number of samples n increases,
H’s size in the Schrödinger equation (with size n× n) also
increases, which is the main factor that causes the slowdown
of the analyse process. In [17], the channel segments are
simply concatenated together resulting in bigger n value for
processing while in our case we only use the selected channel
to analyse. Moreover, it has more clinical knowledge and
expertise incorporated in this framework than the previous
version. To the best of our knowledge, we proposed the
first algorithm framework to incorporate clinical criterion in
[13][14]. Also, the achieved accuracy is comparable with
most studies in [18]. However due to a lack of a common
dataset, comparisons between methods are still hard to make.

TABLE I
5-FOLD PERFORMANCE IN DIFFERENT PATIENT’S EEG RECORDING

(PATIENT EPI002 HAS THREE DIFFERENT SEGMENTS)

Patient ID Accuracy False Detection Rate (FDR)
EPI001 96.7% 3.3%

EPI002(1) 93.6% 6.4%
EPI002(2) 97.2% 2.8%
EPI002(3) 98.8% 1.2%

EPI003 94.3% 5.7%
EPI004 98.3% 1.7%

IV. CONCLUSIONS

This paper presents a framework for reducing the amount
of data needing to be manually analysed by physicians to
identify IED within an epileptic patient’s brain. With a simple
learning model, it achieved a low FDR of 1.2%-6.4% for
a clinical dataset with real patients’ EEG recordings. This
framework can potentially reduce burden of physicians to
analyse huge amounts of data. As future work, we aim at
solving the over-fitting problem due to imbalanced dataset
(with few data being the positive classification value). In par-
ticular, we think of using a Generative Adversarial Network
(GAN) to obtain more training data which can help alleviate
this problem. In addition, we plan to standardize our dataset

by implementing and comparing different algorithms in the
same dataset.
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