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Abstract— A two-step method for obtaining a volumetric
estimation of COVID-19 related lesion from CT images is
proposed. The first step consists in applying a U-NET con-
volutional neural network to provide a segmentation of the
lung-parenchyma. This architecture is trained and validated
using the Thoracic Volume and Pleural Effusion Segmentations
in Diseased Lungs for Benchmarking Chest CT Processing
Pipelines (PleThora) dataset, which is publicly available. The
second step consists in obtaining the volumetric lesion esti-
mation using an automatic algorithm based on a probabilistic
active contour (PACO) region delimitation approach. Our
pipeline successfully segmented COVID-19 related lesions in CT
images, with exception of some mislabeled regions including
lung airways and vasculature. Our workflow was applied to
images in a cohort of 50 patients.

I. INTRODUCTION

As of April 2021, COVID-19 pandemic has caused more
than 3 million deaths worldwide [1]. The utility of Computed
Tomography (CT) imaging has been recognized as an essen-
tial tool to diagnose the novel disease. Automatic algorithms
have been proposed to differentiate COVID-19 disease from
other lung-related illnesses. However, we hypothesize that
relevant information can be extracted from this imaging
technique to help elucidate patient prognosis. For this reason,
we propose a workflow to automatically compute the volume
related to a lesion due to COVID-19 in lung parenchyma.

II. METHODS

A. Study population and CT data acquisition

Data were collected retrospectively from 50 patients (18
female and 32 male, 55 ± 14 years) admitted to the intensive
care unit at the INCMNSZ due to severe pneumonia caused
by COVID-19 infection in the period from march to april of
2020. SARS-CoV-2 infection was confirmed by positive real
time polymerase chain reaction (RT-PCR) test.This protocol
was approved by the institutional ethics committee. Chest CT
images were acquired using a GE Revolution EVO Gen 3
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Fig. 1. U-NET architecture

(GE Healthcare, Milwaukee, WI) system. The used imaging
series consisted in a low resolution acquisition (70 - 101
slices) helical acquisition using a lung window, image size
of 512x512 pixels, slice thickness of 1.25-3.75 mm and 1.25
mm spacing between slices. X-Ray tube voltage and current
were set to 140 kV and 100-300 mA, respectively.

B. Lung parenchyma segmentation

A modified U-NET architecture from that presented in
[2] was proposed to extract the lung parenchyma from the
raw CT images (see Fig. 1). The input to the network is a
volumetric image of (256,256,128). The output is a mask
image of the same size.

This U-NET has an encoder architecture with 5 different
levels to down-sample the input image. In each level two 3D
convolutions are applied with kernel-size (3,3,3). The number
of applied filters per convolution changes according to the
level: 8, 16, 32, 64, and 128. Each convolution is followed
by ReLu activation functions. A batch normalization layer
is applied after both convolutions have been performed. A
Max-pooling operation is then performed in each level (with
exception of the last one). The objective is to downsample
the output volumes by half before getting to the next level.
Furthermore, the residuals for each level are stored to be
concatenated with the corresponding decoder stage levels.
The decoder stage is also composed of five levels. An
upsample operation is performed in each one, followed by
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Fig. 2. Body extraction sequence

a transpose 3D convolution layer, ReLU activitation, and a
concatenation with the residuals coming from the encoder
stages. A normal 3D convolution with a kernel size of (3,3,3)
in addition to a ReLU activation is performed afterwards.
The convolution operations in the decoder stage use the
same number of filters as the corresponding encoder stage at
the same level. A final convolutional layer is applied to the
upmost level with a sigmoid activation function to create the
desired volumetric mask output.

1) U-NET training dataset: An existing lung segmenta-
tion dataset was obtained from The Cancer Imaging Archive:
Thoracic Volume and Pleural Effusion Segmentations in
Diseased Lungs for Benchmarking Chest CT Processing
Pipelines (PleThora) [3]. This dataset contained a total of
402 CT scans with their corresponding left and right thoracic
cavity segmentations of the lung parenchyma obtained from
subjects with diseased lungs.

The provided 402 images, and their associated segmenta-
tion masks, were randomly rearranged in training and vali-
dation datasets. The training dataset contained 70% (n=281)
images, while the validation dataset contained 30% (n=121).

2) Data pre-processing: Lung parenchyma segmentation:
Thoracic CT images from the PleThora training and valida-
tion datasets were extracted from DICOM files and resam-
pled through a linear interpolation to a (512,512,128) size.

A body extraction algorithm was then performed as fol-
lows: First, a binary threshold was applied between 175HU
and 750HU intensity values. Then, a 3D morphological close
filter with kernel radius (5,5,5) was applied. Next, a binary
fill-hole filter was applied. Finally, 3D connected components
were identified. Components with a volume of less than two
liters were removed; see Fig.2 for a visualization of the body
extraction sequence.

3) Data augmentation: PleThora CT images were resam-
pled to a (256, 256, 128) size. Associated segmentation
masks were also resampled to the same space. To expand
the PleThora training dataset, a data augmentation technique
was implemented, which included the following methods:
First, a random flip of the x and/or y axes was applied.
Then, a 3D random rotation among the x,y, and z axes was
performed; the applied rotation varied in a range of (-20,

20) degrees. Next, a 3D random translation in the range
of (-5,5)mm among every axis was implemented. Then, the
images were normalized in such a way that the intensity
values ended with a mean=0 and a standard deviation std=1.
Finally, random Gaussian noise was added with a standard
deviation in the range of std=(0,0.03).

4) Training the U-NET and k-fold Cross-Validation: The
pre-processed PleThora training dataset (n=281 images) was
used to train the U-NET by minimizing a cost function
based in a Dice Coefficient metric [4]. The training sequence
was implemented with a batch size=3, 100 epochs, and
an Adam Optimizer with an initial learning rate of 0.005.
The validation dataset (n=121 images) was used to evaluate
performance of the U-NET training process. An additional
k-fold cross validation routine (k=5) was implemented over
the PleThora dataset to evaluate overall performance of the
network.

The network architecture, training, and cross-validation
routines were designed in Keras-Tensorflow [5]

5) U-NET applied to the COVID-19 patient dataset: Once
the U-NET was trained with the PleThora dataset, it was used
to extract the lung parenchyma for the CT images of the
COVID-19 patients. The same pre-processing methodology
was applied to these images.

C. COVID-19 lesion volume estimation

Lesion segmentation was achieved using the probabilistic
active contours (PACO) algorithm proposed in [6]. The
PACO algorithm consists of the minimization of the next
functional which guides a contour to the border of the object
to be segmented.

E[φ1, ..., φN , P1, ..., PN |I] =
N∑

k=1

{
λk

∫
L

−Pk(V (x))H(φk(x))
∏
j=1
j 6=k

(1−H(φj(x)))dx

+ ρk

∫
L

|∇H(φk(x))|dx

}
(1)

Where V is a volume observed over the voxel lattice L with
N disjoint regions. The functions Pk(.) measure how much
V (x) belongs to one of the N regions. H is the Heaviside
function defined by

H(x) =

{
1, if x ≥ 0

0, if x < 0
(2)

where | · | is the L2 norm, and ∇ is the gradient function.
For the first term of this functional, a probability density

function (PDf) is used to measure how much voxels belong
to each class, and the Heaviside function forces the voxels
to be in a single region. The second term is the classical
regularization term used in active contours algorithms, which
measures the area of the surface that delimitates each volu-
metric region. The constants λk and ρk are used to control
the influence of each term.
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Fig. 3. Initial contours and initial Pk

In order to minimize the functional, PACO uses a two-step
minimization process. In the first step PDFs Pk are estimated
using the voxels delimited by φk. In the second step, E is
minimized with respect to φk using the Euler-Lagrange’s first
variation. These two steps are run repeatedly until achieving
the convergence criterion.

For the lesion segmentation presented in this paper, the
algorithm was implemented in MATLAB R2020b and the
Pk were assumed to be normal distributions. Given the
difference in intensity between healthy and diseased tissue,
the Pk are not overlapped, leading us to think that estimate
the functions with other methodologies, for example Parzen-
windows, will lead to similar results.

To initialize the algorithm, three regions of interest were
manually delimited on one of the volume slices. This slice
was selected from the middle slices, searching for one with
a large lesion area. An example for one patient, of the initial
contours is shown in Fig. 3 along with the initial probability
distribution functions, the green contour corresponds to the
lesion, blue contour to the healthy tissue, and red to the
background. Notice that the background class have a PDF
that approximates a Dirac delta and is not shown in the
figure.

For this application, the λk parameters were set to 1 and
the ρk to 0.5. The iterative process was performed for 100
iterations. The Heaviside, and Dirac delta functions were
replaced as in [6] for numerical implementation.

III. RESULTS

A. Lung parenchyma segmentation

Fig. 4A shows the result of applying the lung parenchyma
segmentation workflow based in the U-NET in a CT image
of the PleThora validation dataset. The first image shows the
ground truth. While the second shows the predicted mask
after using the U-NET architecture.

The k-fold cross-validation (k=5) results for the U-NET
are presented in Table I. These results were obtained when
using the PleThora dataset. The average Dice Coefficient
in the training datasets was 0.9392, while it was 0.9423 in
the validation datasets. The previous numbers indicate that
the network performance is optimal for this segmentation
task: A Dice Coefficient equal to 1.0 will indicate a perfect
segmentation according to the provided masks [4].

Fig. 4. Lung parenchyma segmentation (U-NET performance)

TABLE I
U-NET K-FOLD CROSS VALIDATION

Fold Training
Loss

Training
Dice
Coefficient

Validation
Loss

Validation
Dice
Coefficient

1 0.0649 0.9351 0.0688 0.9312
2 0.0680 0.9320 0.0583 0.9417
3 0.0499 0.9501 0.0442 0.9557
4 0.0634 0.9366 0.0608 0.9392
5 0.0578 0.9422 0.0565 0.9434

Average 0.0608 0.9392 0.0577 0.9423

Fig. 4B shows the results of applying the lung parenchyma
segmentation workflow to a CT image for a patient with
COVID-19. As expected, the U-NET network delivered
acceptable qualitative results. All CT images for the 50
COVID-19 patients were processed using the U-NET. All
lung segmentations were visually inspected.

B. COVID19 Lesion Volume Estimation

Fig. 5 shows the result segmentation using PACO over
the parenchyma image in four different slices from different
patients. The slices appear in different rows in the figure, the
first image of each slice is the parenchyma image which is
the input image for PACO. The second image is the multi-
class output segmentation, with the white color representing
the lesion mask segmented. The third one is the lesion
mask overlapped with the parenchyma; this image allows to
observe qualitatively, the regions where the algorithm makes
a correct segmentation or where it fails.

The algorithm segments correctly the diseased area. Nev-
ertheless, it also includes other regions in the lesion mask,
such as vasculature, airways, and some regions that are not
parenchyma but were delimited by the U-NET.

All 50 patients were categorized in two groups according
to their clinical outcome (survived or died). Our pipeline
was applied to their CT images. The percentage of lesioned
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Fig. 5. COVID19 lesion segmentation with PACO.

Fig. 6. Boxplots for percentages of lesion in survived and deceased patients.

tissue against healthy tissue was obtained per individual. This
value was calculated by counting and comparing the number
of voxels in the output masks. Fig.6 shows a comparison of
the lesion-related percentages observed per group (survived
or died).

IV. DISCUSSION

We proposed a workflow consisting of two steps to obtain
a COVID-19 lung lesion segmentation from CT images.
The first step consisted in isolating the lung parenchyma
using a convolutional neural network following a U-NET
architecture. The second step consisted in applying the PACO
algorithm to create the final lesion mask. Visual inspection
of the output images shows that the proposed pipeline
successfully identifies lesion areas. However, as it can be
seen in Fig.5, other areas which are non-related to the lesion
have been marked by the output mask. Specifically, areas
within lung airways and lung vasculature. Other mislabeled
regions include tissue that is not part of the lung parenchyma.
These regions are selected since the U-NET output has errors

in these areas. That is, the U-NET classifies erroneously
several voxels of the original CT as being part of the lung-
parenchyma. This error is propagated down our pipeline
which affects the performance of the final lesion segmenta-
tion performed by PACO, which is a contour-based algorithm
that is limited by an initial selection of classes. We used three
classes for the PACO algorithm.

The k-fold cross validation results suggest that the chosen
U-NET architecture is optimal for the lung-parenchyma seg-
mentation task. However, these results were obtained in the
PleThora dataset which include CT images whose imaging
sequences differ from the ones obtained for our COVID-19
patient cohort.

The performance of the U-NET in COVID-19 CT im-
ages can be increased by visually inspecting every lung
parenchyma segmentation, and manually correcting the
masks. Thus, creating a COVID-19 training dataset for
segmentation, which can be used for benchmarking future
automatic segmentation pipelines. The U-NET can be re-
trained using this new dataset.

The median of the percentage of the lesion in the deceased
group appears on the third quartile of the survived group,
making this metric an important feature to evaluate COVID-
19 patient prognosis.

V. CONCLUSIONS

Our two-step pipeline successfully segmented COVID-19
related lesions in CT images, with the exception of some
mislabeled regions including lung airways, vasculature, and
tissue not related to lung. Our workflow can be applied to
derive a volume metric related to lesion to evaluate COVID-
19 patient prognosis.
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