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Abstract— Visual prostheses provide promising solution to 

the blind through partial restoration of their vision via electrical 

stimulation of the visual system. However, there are some 

challenges that hinder the ability of subjects implanted with 

visual prostheses to correctly identify an object. One of these 

challenges is electrode dropout; the malfunction of some 

electrodes resulting in consistently dark phosphenes. In this 

paper, we propose a dropout handling algorithm for better and 

faster identification of objects. In this algorithm, phosphenes 

representing the object are translated to another location within 

the same image that has the minimum number of dropouts. 

Using simulated prosthetic vision, experiments were conducted 

to test the efficacy of our proposed algorithm. Electrode dropout 

rates of 10%, 20% and 30% were examined. Our results 

demonstrate significant increase in the object recognition 

accuracy, reduction in the recognition time and increase in the 

recognition confidence level using the proposed approach 

compared to presenting the images without dropout handling. 

Clinical Relevance— These results demonstrate the utility of 

dropout handling in enhancing the perception of images in 

prosthetic vision. 

I. INTRODUCTION 

Among many causes of blindness, diseases such as retinitis 
pigmentosa and aged-macular degeneration represent one of 
the major causes that mainly affect the photoreceptors leading 
to loss of vision [1]. In recent years, different types of visual 
prostheses, aka bionic eyes, have been developed to artificially 
induce visual percepts through electrical stimulation of the 
visual pathway [2]. Retinal implants, such as the Argus II 
device, represent the most successful example of visual 
prostheses that target functional parts of the retina beyond the 
damaged site [3]. In such system, a tiny video camera on the 
bridge of eyeglasses captures images and sends them to a video 
processing unit. This unit transforms the images into electrical 
signals and sends them back to an antenna on the glasses. The 
signals are then transferred wirelessly to electrodes implanted 
either epi-retinal or sub-retinal. In addition to retinal implants, 
other types of visual prostheses have been proposed including 
cortical and thalamic types [4, 5].   

Prosthetic vision induced via visual prostheses consists of 
spots of light called phosphenes that represent the pixels of the 
visual field [2]. Thus, the vision perceived via a visual 
prosthesis has been reported to be different from normal vision 
such that the patients must be ready to learn a new “language” 
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of sight. Such vision is characterized by very low spatial and 
radiometric resolutions. The reduced quality of the perceived 
image results in a number of challenges such as psychological 
challenges due to over expectations from the patients, who 
think that they will restore their natural vision after 
implantation [6], and the difficulty that faces the patients in the 
beginning of using the device in recognizing the objects [7].  

One other challenge that reduces the quality of the 
perceived image in prosthetic vision is stimulation electrode 
dropout. This occurs due to the malfunction of electrodes post-
implantation or being implanted in dead tissue, which causes 
permanent black spots in the location of the corresponding 
phosphene(s) [8]. This negatively affects the recognition and 
identification of objects since some of the key-points in the 
object may be aligned with the receptive field of the neurons 
stimulated by the dropped-out electrodes. The most frequently 
observed percentages of phosphenes’ dropouts have been 
shown to range from 10% to 30% [9, 10]. 

 In this paper, we propose an image processing approach to 
compensate for the effects of electrode dropout on the 
perceived image. In this approach, convolution between a 
bounding box of the object of interest and the phosphene grid 
is used to identify and translate the object of interest to a 
location within the image that fits the object and has minimum 
dropouts. This is performed after showing the actual location 
of the object of interest to help in accurately identifying its 
location. We examined the performance of the proposed 
approach on different groups of normally sighted subjects 
using simulated prosthetic vision. Despite the differences 
between simulated and actual prosthetic vision, where actual 
prosthetic vision tends to be more complex, we adopted a 
phosphene simulation strategy that mimics perceived images 
reported by visual prostheses users [3, 11]. The results indicate 
a significant enhancement in recognizing the objects of interest 
using the proposed dropout handling approach. This could 
eliminate the need for performing additional interventions to 
replace the malfunctioning electrode. 

II. METHODS 

A. Image Pre-processing 

To allow better and faster identification of the object’s 
identity in any prosthetic vision scene in the presence of 
dropouts, we propose an approach that optimally translate the 
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object in the scene to a new location that has minimum number 
of dropouts. In this approach, the input image undergoes pre-
processing prior to applying the dropout handling mechanism. 
In the pre-processing, the input image is first resized to 32 × 
32 pixels that represent the number of hypothesized 
stimulation electrodes. The image is then converted to 
grayscale. Next, Contrast Limited Adaptive Histogram 
Equalization (CLAHE) is applied to the image to enhance the 
image contrast [12].  This is necessary to enhance the contrast 
of the test images for better presentation. A Wiener filter of 
size 3 × 3 is then applied to remove any noise in the image to 
allow better identification of the object [13]. Next, Otsu 
thresholding is applied to perform an automatic image 
thresholding of the image [14]. This algorithm aims to find the 
threshold value where the sum of foreground and background 
spreads is at its minimum. This is followed by applying 
median filter of size 3 × 3 to the image to remove any 
remaining noise while preserving the image’s details. 
Connected components labeling using 8-connectivity is then 
used to help in better object identification, where any region 
that is of an area with a negligible size is then removed [15].  

B. Phosphene Simulation 

The output of the pre-processing stages is used to generate 
a simulated prosthetic vision image. We used a square grid for 
phosphene representation [3]. A circular phosphene shape is 
also used in this study; consistent with multiple simulated 
prosthetic vision studies [11]. The distance between each two 
consecutive phosphenes was set to zero. Dropouts were then 
simulated with rates of 10%, 20% or 30% of the total number 
of pixels [10]. The location of the dropped out phosphenes was 
determined randomly following a uniform distribution. In all 
simulations, a dropped out phosphene was set to a black color.  

C. Dropout Handling 

The main aim of this paper is to minimize the impact of 
dropouts on the perception. This is done by translating the 
object in a certain image to a certain place in the same image 
where the number of dropped out phosphenes is minimum. In 
this approach, we construct a matrix D of size 32 × 32 (i.e., the 
same enhanced input image size) in which dropouts are 
represented by 0, while other pixels are represented by 1. A 
bounding box B is then identified around the object of interest 
by computing the connected-components labeling using 8-
connectiviy to get the connected pixels that refer to the same 
object and retrieve the minimum row, the minimum column, 
the maximum row and the maximum column. All pixels within 
B are set to 1. A convolution process is then performed 
between B and D, and the optimal location for the center of the 
object of interest CNew is identified by the position that has the 
highest value in the convolution output defined as 

  𝐶𝑁𝑒𝑤 =  𝑚𝑎𝑥(𝑥,𝑦){(𝐵 ∗ 𝐷)[𝑥, 𝑦]}                  (1) 

Finally, we translate the object within B in the presented 
image to CNew. If multiple locations have the same maximum 
value in the convolution output, CNew is set as the location that 
is closest to the center of B based on the Euclidean distance. 

D. Experimental Design and Procedure 

To examine the efficacy of the proposed approach, 12 
subjects participated in the experiments (5 males and 7 
females) of age 22 to 60 years. All the participants in the 

experiments had normal/corrected vision. Simulated test 
images were presented to the subjects using a 15-inch 
computer screen. Subjects were seated at a distance of 1 meter 
from the computer screen. This resulted in a visual field angle 
of 20° which mimics the visual filed of visual prostheses [16]. 

Prior to the presentation of the images, each subject was given 
a demonstration that included 3 different test images that are 
different from the images used in the following experiments to 
avoid any learning effects. Two versions of the same image 
were used in the demonstration: The first version is displayed 
in terms of phosphenes to introduce the subjects to prosthetic 
vision, and the second version demonstrated the effect of 
phosphene dropout (i.e., black spots). 

The test subjects were divided into 4 groups with 3 subjects 
each. Each group participated in a different experiment in 
which each subject was presented with 24 different test 
images: 8 images with 10% dropout, 8 images with 20% 
dropout and 8 images with 30% dropout. The 24 test images 
set was fixed across all subjects. Each test image was displayed 
in a trial of duration 10 sec and then the subjects were given 
the chance to tell the identity of the object displayed in the 
image. The images represented objects from different 
categories including car, utensils, flower, window, bed, chair, 
numbers, bird, teapot, stairs, shelf, and truck.  

The first group of subjects was presented with the test 
images after performing the pre-processing and prosthetic 
vision simulation for the whole 10 sec. No dropout handling 
was performed. This group represents what current visual 
prostheses users would perceive. The second group was 
presented with the same image presented to the first group for 
5 sec only. The object is then translated to a random position 
within the image and displayed for another 5 sec. This test was 
performed to determine whether any enhancement in 
performance was in fact due to the proposed dropout handling 
approach or a result of displaying two different versions of the 
object to the subject. Dropout handling was examined in the 
two other groups. The third group was presented with the 
output of the proposed dropout handling approach for the 
entire 10 sec. The last group was presented with the test images 
after pre-processing and prosthetic vision simulation without 
dropout handling for 5 sec, and then with the output of the 
dropout handling approach for another 5 sec. This last group 
represents, contrary to the third group, a practical 
implementation of the proposed approach as it still provides 
the subject with the actual location of the object of interest 
during the first 5 sec, and then a better presentation of the 
object for another 5 sec after dropout handling. This could help 
in providing the subject with an accurate localization of the 
object while minimizing the effects of dropout. 

 E. Evaluation Metrics 

Three metrics were used to assess the performance of each 
group. First, we measured the object recognition accuracy as  

    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 % =  
𝑁

𝑇
× 100                                                          (2) 

where N is the number of correctly identified objects by the 
subject and 𝑇 is the total number of presented test images. 
Second, the time taken by the subject to correctly recognize 
the presented object was recorded, with a maximum of 10 sec. 
Finally, the subjects reported their confidence level in the 
recognition on a scale of 1 to 5. 
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Figure 1. Dropout simulation and handling for different dropout rates of 10%, 20% and 30%. 

III. RESULTS 

A.  Dropout Simulation and Handling 

We first demonstrate the output of each stage of the 
proposed approach. Fig. 1 illustrates an overview of the 
process implemented to show the effect of the dropout 
handling approach on the object clarification and, thus, object 
recognition. It shows a sample test image representing the 
number “eight” for different dropout rates. The figure 
demonstrates, especially in the case of 30% dropout rate, how 
translating the object of interest to a location with minimum 
number of dropouts enhances the presentation. 

B. Performance Evaluation 

We examined the utility of the proposed approach by 
presenting different sets of images to four groups of subjects. 
For each group, images with 10%, 20% and 30% dropout rates 
were presented. Fig. 2 illustrates the performance of the test 
subjects for a dropout rate of 10%. Fig. 2a demonstrates 
significantly higher recognition accuracy when the proposed 
dropout handling approach was used compared to not applying 
dropout handling and compared to presenting the subjects with 
the images without dropout handling for 5 sec in addition to a 
randomly translated version of the image for another 5 sec (No 
dropout handling: 66.67 ± 29.56%, Random placement: 77.1 
± 19.79%, Dropout handling: 97.91 ± 5.9%, P < 0.05, n = 24, 
two-sample t-test). Moreover, the figures demonstrate that 
dropout handling results in significantly shorter recognition 
time (Fig. 2b; No dropout handling: 8.68 ± 1.55 sec, Random 
placement: 7.88 ± 2.38 sec, Dropout handling: 3.33 ± 1.28 sec, 
P < 1e-07, n = 24, two-sample t-test) and higher decision 
confidence (Fig. 2c; No dropout handling: 3.48 ± 0.79, 
Random placement: 3.75 ± 0.74, Dropout handling: 4.91 ± 
0.24, P < 1e-04, n = 24, two-sample t-test).  

One disadvantage of applying the proposed approach is 
that it modifies the actual location of the displayed object. This 
might be confusing to a visual prosthesis user as it does not 
accurately represent the visual field of the subject. Therefore, 
to provide the subjects with both the actual location of the 
object in addition to a better representation with least dropouts, 
we modified the image presentation for the last group of 
subjects. In this presentation, the image is presented without 
dropout handling for 5 sec followed by presenting the image 
after dropout handling for another 5 sec. A significantly better 
performance can still be observed using this approach 
compared to no dropout handling and the random placement 
approaches (Recognition accuracy: 97.9 ± 5.9%, Time: 6.24 ± 
0.94 sec, Confidence level: 4.84 ± 0.35, P < 0.05, n = 24, two- 
sample t-test). In addition, no significant difference can be 
observed between this modified presentation and applying the 
dropout handling for the entire 10 sec in terms of both the 

 
                                (a)                                                       (b) 

            
             (c) 

Figure 2. Experiments statistics analysis for 10% dropout rate for three 

metrics (a) recognition accuracy, (b) time to decision, and (c) confidence 

level (mean ± std). Blue bars represent not using dropout handling, while red 
bars represent two different versions of dropout handling. *P < 0.05, **P < 

1e-04, ***P < 1e-07, two-sample t-test. 

recognition accuracy and the confidence level. However, in 
terms of the time taken to decide the identity of the object, 
higher time was needed by the subjects. This is expected given 
that for half of the time (i.e., 5 sec), the dropout handling 
approach was not applied, which contributes to the time 
needed to recognize the object. 

Examining the performance of the four groups of subjects 
with dropout rates of 20% and 30% as demonstrated in Fig. 3 
and Fig. 4, respectively, revealed a consistent enhancement 
when using the proposed dropout handling approach. First, 
significantly higher recognition accuracy can be observed 
using the dropout handling approach applied for the entire 10 
sec compared to not applying dropout handling and the 
random placement approaches in the case of 20% dropout rate 
(No dropout handling: 62.5 ± 44.32%, Random placement: 
58.34 ± 41.79%, Dropout handling: 95.83 ± 7.73%, P < 0.05, 
n = 24, two-sample t-test). For the 30% dropout rate, higher, 
yet not statistically significant, recognition accuracy can be 
observed using dropout handling (No dropout handling: 87.5 
± 35.35%, Random placement: 83.34 ± 35.63%, Dropout 
handling: 100%). The lack of significance in this case can be 
explained given that for 30% dropout rate, relatively simpler 
test images were used to compensate for the high dropout rate 
used. Second, enhancement in the performance can be 
observed in both the time taken to decide the identity of the 
presented object and the decision confidence for a dropout rate 
of 20% (Time: No dropout handling: 8.93 ± 1.51 sec, Random 
placement: 8.41 ± 2.22 sec, Dropout handling: 5.08 ± 1.69 sec, 

Without Dropout Handling 
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                        (a)                                                       (b) 

           
          (c) 

Figure 3. Experiments statistics analysis for 20% dropout rate for three 

metrics (a) recognition accuracy, (b) time to decision, and (c) confidence 

level (mean ± std). Blue bars represent not using dropout handling, while red 
bars represent two different versions of dropout handling. *P < 0.05, **P < 

1e-04, ***P < 1e-07, two-sample t-test. 

P < 1e-07, n = 24, two-sample t-test; Confidence level: No 
dropout handling: 3.28 ± 1.25, Random placement: 3.2 ± 1.6, 
Dropout handling: 4.63 ± 0.7, P < 1e-04, n = 24, two-sample 
t-test) and a dropout rate of 30% (Time: No dropout handling: 
8.33 ± 1.28 sec, Random placement: 7.08 ± 1.53 sec, Dropout 
handling: 3.86 ± 0.93 sec, P < 1e-07, n = 24, two-sample t-test; 
Confidence level: No dropout handling: 3.95 ± 1.32, Random 
placement: 4.16 ± 1.24, Dropout handling: 4.96 ± 0.11, P < 1e-
04, n = 24, two-sample t-test). Finally, applying the dropout 
handling approach for 5 sec only out of the entire 10 sec 
showed no significant difference in both the recognition 
accuracy and the confidence level compared to using the 
dropout handling approach for the entire 10 sec for both 20% 
and 30% dropout rates. However, similar to the 10% dropout 
rate, significant increase in the time taken to decide the identity 
of the object can be observed. 

IV. CONCLUSION 

Visual prostheses have recently demonstrated success in 
restoring vision to the blind. One of the challenges that affect 
the quality of the perceived prosthetic image is electrode 
dropout. We proposed an approach that could help in better 
recognition of the identity of an object by means of 
convolution and translation. The object’s phosphenes are 
optimally translated to a location with minimum number of 
electrodes dropouts. Experiments using simulated prosthetic 
vision revealed a significant enhancement in the ability of the 
test subjects to recognize the presented objects using the 
proposed approach compared to presenting the test image 
without dropout handling to the subjects as well as randomly 
translating the object within the image. Additionally, for the 
practical utilization of the approach, presenting the output of 
the proposed approach to the test subjects subsequent to 
presenting the image without dropout handling showed similar 
enhancement. These results indicate the efficacy of the 
proposed approach in compensating for the effects of electrode 
dropout in visual prostheses. Further studies that involve 
visual prostheses users should be pursued to better assess the  

 

  
                                 (a)                                                     (b) 

               
                                       (c)  

Figure 4. Experiments statistics analysis for 30% dropout rate for three 

metrics (a) recognition accuracy, (b) time to decision, and (c) confidence 
level (mean ± std). Blue bars represent not using dropout handling, while red 

bars represent two different versions of dropout handling. *P < 0.05, **P < 

1e-04, ***P < 1e-07, two-sample t-test. 

utility of the proposed approach by measuring the accuracy 
and time taken for object identification and localization.  
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