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Abstract— Human motion analysis is gaining increased 

importance in several fields, from movement assessment in 

rehabilitation to recreational applications such as virtual 

coaching. Among all the technologies involved in motion 

capture, Magneto-Inertial Measurements Units (MIMUs) is one 

of the most promising due to their small dimensions and low 

costs. Nevertheless, their usage is strongly limited by different 

error sources, among which magnetic disturbances, which are 

particularly problematic in indoor environments. Inertial 

Measurement Units (IMUs) could, thus, be considered as 

alternative solution. Indeed, relying exclusively on 

accelerometers and gyroscopes, they are insensitive to magnetic 

disturbances. Even if the literature has started to propose few 

algorithms that do not take into account magnetometer input, 

their application is limited to robotics and aviation. The aim of 

the present work is to introduce a magnetic-free quaternion 

based Extended Kalman filter for upper limb kinematic 

assessment in human motion (i.e., yoga). The algorithm was 

tested on five expert yoga trainers during the execution of the 

sun salutation sequence. Joint angle estimations were compared 

with the ones obtained from an optoelectronic reference system 

by evaluating the Mean Absolute Errors (MAEs) and Pearson’s 

correlation coefficients. The achieved worst-case was 6.17°, 

while the best one was 2.65° for MAEs mean values. The 

accuracy of the algorithm was further confirmed by the high 

values of the Pearson’s correlation coefficients (lowest mean 

value of 0.86). 

 
Clinical Relevance— The proposed work validated a magnetic 

free algorithm for kinematic reconstruction with inertial units. 

It could be used as a wearable solution to track human 

movements in indoor environments being insensitive to magnetic 

disturbances, and thus could be potentially used also for 

rehabilitation purposes. 

I. INTRODUCTION 

Human movement analysis aims at gathering quantitative 
information about the mechanics of the musculo-skeletal 
system during the execution of a motor task.  Nowadays, 
different technologies are used to carry out human motion 
analysis, such as infrared optoelectronic systems (OMCs) [1], 
Magneto-Inertial Measurement Units (MIMU) [2] and video 
camera based systems [3]. Among them, the “gold standard” 
for motion tracking are OMCs, which are based on the 
triangulation on several retro-reflective markers attached to 
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the body [4]. Although these systems are characterized by high 
accuracies, they require a controlled environment and specific 
skills to be used, turning out to be impractical with outdoor 
applications. On the other hand, MIMUs result extremely user-
friendly, cheap and small-in-size sensors. They can be used in 
uncontrolled environments too, but they are less accurate for 
kinematic estimation compared to OMCs. MIMUs are multi-
sensor platforms composed by triaxial accelerometer, 
gyroscope and magnetometer. The algorithms, used to obtain 
orientation information from MIMUs, are generally referred to 
as “sensor fusion” algorithms and they exploit the data from 
multiple sensors to give a reliable estimation of kinematic 
parameters, such as joint angles. Among them, Kalman filters 
are considered  among the most reliable, efficient and robust 
sensor fusion algorithm [5]. In particular, attitude estimation is 
a classic non-linear problem so the Extended Kalman Filter is 
generally used [6]. As concerns MIMUs, attitude estimation is 
influenced by magnetic disturbances (i.e., presence of 
ferromagnetic object). This phenomenon greatly limits the 
indoor applications of MIMU technology [7]. On the other 
hand, Inertial Measurement Units (IMUs), composed by 
accelerometers and gyroscopes only, represent an alternative 
technology to MIMUs being insensitive to magnetic 
disturbances. Several solutions have been introduced to 
estimate the orientation from inertial sensors. Complementary 
filters [8] estimates the attitude using gyroscopes and 
accelerometers data only. They showed good capabilities but 
they did not rely on a model for describing the process, which 
could cause a loss of accuracy [9]. Instead, extended and 
unscented Kalman filters are characterized by higher 
estimation precision because of the presence of a process 
model that could fix observational data. Nevertheless, only 
few studies exploited gyroscopes and accelerometers 
exclusively and their application was limited to robotics [10] 
and aviation. 

Based on this, the purpose of this study is to validate a 
magnetic-free algorithm for human kinematic reconstruction 
to be used in indoor environments, in which the presence of 
ferromagnetic objects could significantly reduce the quality of 
the recordings. To this aim, we developed an Extended 
Kalman Filter based on IMUs and we tested it in an indoor 
sport application, tracking upper limb motion during a yoga 
sequence of poses. In our knowledge, no previous study has 
applied an Extended Kalman Filter for kinematic assessment 
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in peculiar movements such as the ones introduced by the 
proposed yoga sequence. This physical activity involves 
complex full body postures in which the upper limb pose 
changes significantly, exploring a very large range of motion. 
We choose an Extended Kalman filter which follows the same 
rules of the classic linear Kalman Filter through the 
linearization of the non-linear process. The joint angles 
estimated with IMUs were compared with the one calculated 
using an optoelectronic system to assess the correctness of the 
estimations.  

II. MATERIALS AND METHODS 

A. Participants  

Five expert yoga practitioners (age: 24.0±3.3 years, 

height: 180.8±6.3 cm, mass: 72.4±8.3 kg) were involved in 

tests. Participants, in accordance with the Helsinki protocol, 

signed an informed consent form to take part to the study.  

B. Experimental procedure 

Four IMUs (TuringSense, Santa Clara, US, sampling rate: 

100 Hz) were placed laterally on the right upper limb and on 

the trunk using elastic bands. Each IMU was mounted on a 

3D-printed plastic support together with three reflective 

markers needed to acquire reference data from the OMC. 

After the preliminary placement of the IMUs, participants 

performed the sun salutation sequence in a controlled 

environment (i.e., laboratory of biomechanics).  

C. Biomechanical model 

For each segment involved in the study (i.e., trunk – TRK, 
right upper arm – RUA, right lower arm – RLA and right hand 
– RHD) an anatomical frame was defined from both OMC and 
IMU data. The abovementioned reference frame was built by 
matching the y-axis (i.e., internal-external rotation axis) with 
the longitudinal axis of the right upper limb segments, the x-
axis (i.e., flexion-extension axis) coming out laterally from left 
to right and the z-axis (i.e., abduction-adduction axis) 
orthogonal to the others (out of the plane). In the attempt of 
avoiding the use of the magnetometer, one of the usually 
adopted reference directions in the global frame, that is the 
Earth magnetic field direction, becomes unavailable. This calls 
for the need of a new reference vector that can be obtained 
from anatomical considerations by asking the participant to 
execute a functional movement wearing sensors before the 
experiment itself. We adopted the approach previously 
proposed by Ligorio et al. [11]. Indeed, the flexion-extension 
direction as measured by the gyroscopes during a preliminary 
functional movement can be used to define a horizontal vector 
(𝒆1𝑠, in which the angular velocity vector during the flexion is 
used - �̅�|𝑓𝑙𝑒𝑥𝑖𝑜𝑛) in the orthogonal plane with respect to the 

gravity vector. Thus, the first axis of the sensor frame was the 
gravity vector (𝒆2𝑠 that exploited the acceleration measured by 
the accelerometers during the N-pose - �̅�|𝑁𝑝𝑜𝑠𝑒) measured by 

accelerometers during a preliminary N-pose (static position 
with the arm relaxed along the body), the second one was 𝒆1𝑠 
and the third one was the cross product between them.  

Body reference frame: 

 
𝒆1𝑎 = [

1
0
0

] , 𝒆2𝑎 = [
0
1
0

] , 𝒆3𝑎 = [
0
0
1

] (1) 

   
Sensor reference frame: 

 

𝒆1𝑠 =
�̅�|𝑓𝑙𝑒𝑥𝑖𝑜𝑛

‖�̅�|𝑓𝑙𝑒𝑥𝑖𝑜𝑛‖
−

(
�̅�|𝑓𝑙𝑒𝑥𝑖𝑜𝑛

‖�̅�|𝑓𝑙𝑒𝑥𝑖𝑜𝑛‖
⦁𝒆2𝑠)

‖𝒆2𝑠‖2 𝒆2𝑠 

𝒆2𝑠 =
�̅�|𝑁𝑝𝑜𝑠𝑒

‖�̅�|𝑁𝑝𝑜𝑠𝑒‖
 

𝒆3𝑠 =
𝒆1𝑠 × 𝒆2𝑠

‖𝒆1𝑠 × 𝒆2𝑠‖
 

 (2) 

The cosine matrix that describes the rotation from the 
sensor frame to the anatomical one was estimated as follows: 

 𝑅𝑎
𝑠 = [𝒆1𝑎 𝒆2𝑎 𝒆3𝑎][𝒆1𝑠 𝒆2𝑠 𝒆3𝑠]−1 (3) 

From 𝑹𝑎
𝑠  the corresponding quaternion 𝒒𝑎

𝑠  was calculated. 

D. Extended Kalman Filter 

Since attitude estimation is a classic example of a non-
linear problem, a classic Extended Kalman Filter was used [6]. 
Considering the relative high sampling rate (i.e., 100 Hz), the 
time-discrete version of the Extended Kalman Filter is here 
used. As mentioned above, the algorithm relies on the 
gyroscopes (𝝎) and accelerometers (𝒂) signals only, which 
can be modeled as follows: 

 
{
𝒂 =  𝐾𝑎(𝒈 + 𝒂𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙) + 𝒃𝑎 + 𝒗𝑎

𝝎 = 𝐾𝑔𝝎𝒊𝒏𝒆𝒓𝒕𝒊𝒂𝒍 + 𝒃𝒈 + 𝒗𝒈
 (4) 

Where 𝐾𝑎 and 𝐾𝑔 are the scale factor matrix, which we 

assumed to be the identity matrix (i.e., ideal case),  𝒃𝑎 and 𝒃𝒈 

are the accelerometers and gyroscopes bias respectively that 
were assumed to be null because before each acquisition a 
sensor calibration was done. Vectors 𝒗𝑎 and 𝒗𝒈 are white 

noise with zero mean and covariance matrices 𝛴𝑎 and 𝛴𝑔: 

 

𝛴𝑎 = [

𝜎𝑎𝑥
2 0 0

0 𝜎𝑎𝑦
2 0

0 0 𝜎𝑎𝑧
2

] , 𝛴𝑔 = [

𝜎𝑔𝑥
2 0 0

0 𝜎𝑔𝑦
2 0

0 0 𝜎𝑔𝑧
2

] (5) 

 
 The state vector of the proposed filter is composed by the 

orientation quaternion only (in this paper the convention with 
the scalar part of the quaternion placed at the fourth element is 
used [12]).  

 

𝒙𝑘 = 𝒒𝑘 = [
�̅�
𝑞4

] = [

𝑞1

𝑞2
𝑞3

𝑞4

] (6) 

Equation (7) and Equation (8) shows the state transition 
equation and the measurement model respectively. 

 𝒙𝑘+1 = 𝐴𝑘𝒙𝑘 + 𝒗𝑥𝑘
 (7) 

 
𝒛𝑘+1 = 𝑓(𝒙𝑘+1) + 𝒗𝑘+1 = [

𝐶(𝒙𝑘+1)𝒂0

𝐶(𝒙𝑘+1)𝒉0
] + [

𝒗𝑎

𝒗𝒈
] (8) 

where 𝐴𝑘 is defined as in Equation (9) and 𝒗𝑥𝑘
 is the process 

noise, which is strictly connected to the gyroscope noise [6]: 

 
𝐴𝑘 = 𝐼3𝑥3 cos(0.5‖𝝎𝒌‖𝑇𝑠) + [

[𝝎𝒌]× 𝝎𝒌

−𝝎𝒌
𝑇 0

]
sin(0.5‖𝝎𝒌‖𝑇𝑠)

‖𝝎𝒌‖
  (9) 
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𝒗𝑥𝑘
= −

𝑇𝑠

2
[
[𝑞𝑘̅̅ ̅]× + 𝑞4𝑘

𝐼3𝑥3

−𝑞𝑘̅̅ ̅𝑇
] 𝒗𝒈 (10) 

𝑇𝑠 is the sample rate. As concerns the measurements model, 
𝐶(𝒙𝑘+1), 𝒂𝟎 and 𝒉𝟎 are defined by Equations (20) and (22) 
respectively, while 𝒗𝑎 and 𝒗𝒈 are white noise with zero mean 

and covariance matrices defined by Equation (5). 
 

Prediction step 
 𝒙𝑘+1

− = 𝐴𝑘𝒙𝑘 (11) 
 
 𝑃𝑘+1

− = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 + 𝑄𝑘 (12) 

 
Where 𝒙𝑘+1

−  is the a priori state, 𝑃𝑘+1
−  is the a priori error 

covariance matrix. 𝑄𝑘 is the process noise covariance, which 
is directly linked to the gyroscope noise covariance matrix, 
since the quaternion is propagated using only the angular 
velocities.  

 
𝑄𝑘 = (

𝑇𝑠

2
)

2

𝐺𝑘𝛴𝑔𝐺𝑘
𝑇 (13) 

where 𝐺𝑘 is [6]: 
 

𝐺𝑘 = [
[𝑥𝑘̅̅ ̅]× + 𝑥4𝑘

𝐼3𝑥3

−𝑥𝑘̅̅ ̅𝑇 ] (14) 

 
 
Filtering step 

 
𝑧𝑝𝑟𝑒𝑑 = [

𝐶(𝒙𝑘+1
− )𝒂0

𝐶(𝒙𝑘+1
− )𝒉0

]  (15) 

 𝐾𝑘+1 = 𝑃𝑘+1
− ∇𝑧𝑝𝑟𝑒𝑑

𝑇 (∇𝑧𝑝𝑟𝑒𝑑𝑃𝑘+1
− ∇𝑧𝑝𝑟𝑒𝑑

𝑇 + 𝐷) (16) 

 
𝒙𝑘+1 = 𝒙𝑘+1

− + 𝐾𝑘+1([
𝒂𝑘+1

𝒉𝑘+1
] − 𝑧𝑝𝑟𝑒𝑑) (17) 

 𝑃𝑘+1 = (𝐼4𝑥4 − 𝐾∇𝑧𝑝𝑟𝑒𝑑) 𝑃𝑘+1
−  (18) 

Where 𝐾𝑘+1 is the filter gain, 𝒙𝑘+1 and 𝑃𝑘+1 the a posteriori 
state and error covariance matrix, while 𝐶(𝒙𝑘+1

− ) is defined as 
in (20) and D as: 

 
𝐷 = [

𝛴𝑎 0
0 𝛴𝑔

] (19) 

with: 
 𝑠 = ‖𝒙‖2 =  𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝑥4
2 (21) 

 

In addition, we assumed that: 
 𝒉0 = 𝒆1𝑠, 𝒂0 = 𝒆2𝑠 (22) 

 𝒉𝑘+1 = 𝑒(−[𝝎𝒌]×𝑇𝑠)𝒉𝑘  (23) 
 

E. Joint angles estimation 

Joint cardan angles were estimated from the 

corresponding joint quaternions [11] by exploiting equation 

(24), in which 𝑑𝑠 is the distal segment and ps is the proximal 

one. The symbol ⨂ represents the Hamiltonian product 

between quaternions. 

𝒒𝒏𝒕𝒓𝒖𝒏𝒌
𝒏𝒅𝒔 /𝒒−𝟏

𝒏𝒕𝒓𝒖𝒏𝒌

𝒏𝒑𝒔
 are the quaternions that describe the 

misalignment between the global reference frame of the 

corresponding body segment and the trunk frame. Indeed, 

since the algorithm relied only on gyroscopes and 

accelerometers, each IMU is characterized by a different 

global reference frame. The trunk frame was thus considered 

as the reference to which realign the global frames of each 

IMU [11]: 

 𝑞𝑛𝑡𝑟𝑢𝑛𝑘
𝑛𝑠 = 

𝒙𝒔
−𝟏|𝑁𝑝𝑜𝑠𝑒⨂𝒒𝒔

−𝟏
𝒂

𝒔
⨂𝒒𝒕𝒓𝒖𝒏𝒌𝒂

𝒔 ⨂𝒙𝒕𝒓𝒖𝒏𝒌|𝑁𝑝𝑜𝑠𝑒 

(25) 

 

E. Data analysis 

In order to verify the accuracy of yoga joint angles 

estimation, the joint error quaternions between OMC and 

IMU were computed as follows [13]: 

 𝛥𝑞 =  (𝒒𝐼𝑀𝑈)−1⨂(𝒒𝑂𝑀𝐶) (26) 

 

Therefore, the error joint angles (Δαx, Δαy, Δαz) were 

estimated from Δq. The Mean Absolute Error (MAE) was  

calculated as follows: 

 

𝑀𝐴𝐸𝑥,𝑦,𝑧 =
∑ |𝛥𝛼𝑥,𝑦,𝑧𝑘

|𝑁
𝑘=1

𝑁
 (27) 

 

In addition, Pearson’s correlation coefficients between 

IMU and OMC were estimated for each angle. 

 

III. RESULTS 

A graphical representation of the estimated joint angles is 

reported in Figure 1. Finally, MAEs and Pearson’s correlation 

coefficient values are shown in Table 1. 

 

TABLE I. MAEs (mean ± standard deviation) and 

Pearson’s correlation coefficients 

 AB/AD IR/ER FE 

Wrist 

MAE [°] 

Pearson 

 

4.80 ± 0.70 

0.86 ± 0.16 

 

4.45 ± 1.81 

0.88 ± 0.12 

 

6.17 ± 0.87 

0.99 ± 0.01 

Elbow 

MAE [°] 

Pearson 

 

3.28 ± 2.00 

0.94 ± 0.04 

 

3.24 ± 0.77 

0.96 ± 0.01 

 

2.65 ± 1.28 

0.88 ± 0.11 

Shoulder 

MAE [°] 

Pearson 

 

4.45 ± 1.87 

0.98 ± 0.02 

 

3.16 ± 0.95 

0.98 ± 0.02 

 

4.54 ± 2.16 

0.99 ± 0.01 

IV. DISCUSSIONS 

The present work introduced a magnetic-free quaternion 

 

𝐶(𝒙) =
1

𝑠
[

𝑥1
2 − 𝑥2

2 − 𝑥3
2 + 𝑥4

2 2(𝑥1𝑥2 + 𝑥3𝑥4) 2(𝑥1𝑥3 − 𝑥2𝑥4)

2(𝑥1𝑥2 − 𝑥3𝑥4) 𝑥4
2 + 𝑥2

2 − 𝑥3
2 − 𝑥1

2 2(𝑥2𝑥3 + 𝑥1𝑥4)

2(𝑥1𝑥3 + 𝑥2𝑥4) 2(𝑥2𝑥3 − 𝑥1𝑥4) 𝑥3
2 + 𝑥4

2 − 𝑥1
2 − 𝑥2

2

]  

 

(20) 

 𝒒𝑗𝑜𝑖𝑛𝑡 = (𝒒𝒅𝒔𝒂
𝒔 ⨂𝒙|𝑑𝑠⨂𝒒𝒏𝒕𝒓𝒖𝒏𝒌

𝒏𝒅𝒔 )⨂(𝒒−𝟏
𝒏𝒕𝒓𝒖𝒏𝒌

𝒏𝒑𝒔
⨂𝒙−𝟏|𝑝𝑠⨂𝒒𝒑𝒔𝒂

𝒔 )  (24) 
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based Extended Kalman Filter for attitude estimation in 

human motion tracking applications. The filter was validated 

during Yoga poses on upper limb kinematics. It relies on 

gyroscopes and accelerometers only, making it insensitive to 

magnetic disturbances and thus particularly convenient in 

indoor applications, where magnetic disturbances and 

ferromagnetic objects may jeopardize the attitude estimation 

accuracy. The comparison between IMU and OMC showed 

an average MAE that ranges from 2.65° to 6.17° for the 

flexion-extension angle. Considering the small errors 

observed despite the large range of motion of the right upper 

limb during the sun salutation sequence (up to 200 degrees), 

the proposed solution seems suitable for motion tracking in 

uncontrolled environments. Indeed, alternative solutions 

considering also the magnetometer shows similar 

performances in using the Earth magnetic field as second 

reference vector. As example, Sabatini [6] developed an 

Extended Kalman filter using also the magnetometer 

information, obtaining an overall accuracy of 4.57 ° (1.31° for 

the roll angle, 1.40° for pitch angle and 4.13 for yaw angle), 

while Yun et al. [14] developed a Kalman filter for human 

motion tracking with an accuracy that ranged from 2° to 9°, 

depending on the velocity of the movement. Another example 

of magnetic-free Kalman filter was the one developed by 

Ligorio et al. [15]. In that case the developed filter was a linear 

Kalman filter applied on a single IMU placed on the hand and 

the reached accuracies were generally lower than 5°.The 

suitability of the proposed Extended Kalman Filter is further 

confirmed by the high Pearson’s correlation coefficients 

achieved in the comparison with the reference signal, with 

values greater than 0.86 (obtained for the wrist internal-

external rotation). The following limitations must be 

acknowledged when interpreting the present study results: a 

limited number of participants was considered and only the 

right upper limb joint angles were estimated. In addition, 

future efforts should be focused on the introduction of the 

compensation of the gyroscope bias vector in the filter state 

vector. In conclusion, the proposed magnetic-free Extended 

Kalman filter was effective in estimating the upper-limb joint 

angles during a traditional Yoga sequence with accuracies 

suitable to human movement tracking applications such as a 

virtual coaching solution.  
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Figure 1: Example of IMU (in blue) and OMC (in orange) joint angles estimations 
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