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Abstract— Brain age estimation is a widely used approach to
evaluate the impact of various neurological or psychiatric brain
disorders on the brain developmental or aging process. Current
studies show that neuroimaging data can be used to predict
brain age, as it captures structural and functional changes that
the brain undergoes during development and the aging process.
A robust brain age prediction model not only has the potential
in assisting early diagnosis of brain disorders but also helps
in monitoring and evaluating effects of a treatment. Although
access to large amounts of data helps build better models
and validate their effectiveness, researchers often have limited
access to brain data because of its challenging and expensive
acquisition process. This data is not always sharable due to
privacy restrictions. Decentralized models provide a way which
does not require data exchange between the multiple involved
groups. In this work, we propose a decentralized approach for
brain age prediction and evaluate our models using features
extracted from structural MRI data. Results demonstrate that
our decentralized brain age model achieves similar performance
compared to the models trained with all the data in one location.
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I. INTRODUCTION

Brain age estimation (BAE) from magnetic resonance
imaging (MRI) images has become widely used in recent
years. The brain age gap, computed as the difference between
chronological age and estimated brain age, is helpful in
early identification of various neurodegenerative diseases,
such as Alzheimer’s, Huntington’s, and Parkinson’s diseases,
and is known to be present in patients with disorders such
as dementia and autism[1], [2]. There are several studies
using machine learning and deep learning algorithms with
promising prediction models[3], [4]. However, there is no
clear understanding on which models perform the best. It
is a known fact that having a large training dataset helps
in achieving robust models, but due to the expensive data
collection process and lack of availability of many subjects
with MRI data, one is limited by the amount of data that can
be gathered for analysis. This is especially true for evaluating
the ’brain age gap’ which is often used to evaluate patient
groups. One approach to alleviate this problem is to work
with different datasets collected worldwide. Researchers can
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greatly benefit if a larger study can be performed using these
worldwide datasets.

One approach of pooling data is to collect all the data in
a centralized location and perform analysis. This approach
is inefficient for neuroimaging-based studies as MRI data is
usually large and saving all the data in one central location
not only has high transmission costs and delays, but also
requires large amounts of redundant storage. In addition,
data cannot be readily shared (which represents a substantial
amount of the existing data) due to privacy restrictions.

A better approach to bypass these problems is to use
decentralized (or federated) algorithms, which do not require
assembling the data in one central location. Decentralized
algorithms are particularly important when there is a need to
perform analysis on large data that involve diverse worldwide
datasets without worrying about data transmission or violat-
ing privacy. Decentralized algorithms have been successfully
used in different domains and are an active research area.

Prior studies using BAE perform analysis require all the
data to be available at one location. In this work, we
develop and apply a decentralized brain age prediction algo-
rithm using a regression model and show that decentralized
prediction models achieve performance similar to that of
centralized models. We perform detailed experiments on
surface parcellation features extracted from structural MRI
data using various sampling methods and demonstrate the
robustness of our approach. We implement our approach
within the Collaborative Informatics and Neuroimaging Suite
Toolkit for Anonymous Computation[5], [6] framework for
our decentralized analysis, which emphasizes decentralized
approaches for neuroimaging analysis.

II. BACKGROUND

A. Brain age Estimation and current approaches

Brain age Estimation (BAE) is helpful in early identifica-
tion of some neurodegenerative diseases(Alzheimer, Parkin-
son and others) and identifying brain age gaps (a significant
symptom in patients with dementia and autism)[2]. The brain
age (of an individual) is the observable age of the brain
in contrast to the chronological (actual) age. As brain age
cannot be measured directly, models are typically trained
with chronological age of the healthy subjects to predict the
brain age and the difference between the estimated brain
age and chronological age is considered to be the brain
age gap. The chronological age of an individual is usually
close to the brain age; however, studies show that brain age
gap can increase due to neurodegenerative diseases (such as
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Fig. 1. Overall flow of model parameters from locally trained SVR models with Freesurfer features extracted from sMRI data that are sent to the main
site for aggregation. The aggregated model parameters are used to transform the data at the main site into new features, which are used for training a new
decentralized SVR model.

Alzheimer’s, Huntington’s, Parkinson’s, and multiple scle-
rosis) or decrease with activities such as meditation[7] and
physical exercise[8].

Recently, MRI images are widely used for brain age
prediction. There are broadly three different approaches that
have been previously used, namely, voxel-based, region-
based, and surface-based approaches[9]. Deep learning mod-
els have shown promising results in BAE. Authors of [10]
compute BAE using both raw MR images and preprocessed
MR images with deep learning models, and both showed
consistent results. The authors of [11] employ single and
multimodal brain imaging data, including structural MRI
(sMRI), diffusion tensor imaging (DTI), and resting state
fMRI (rs-fMRI), and evaluate performance on many models.
Recently, graph neural networks have also been used for
BAE[12] using data from the UK Biobank[13]. However,
there is no clear understanding about which models perform
the best; though it is clear that having large amounts of
training data usually helps in achieving robust models.

B. Decentralized learning

Decentralized learning (also referred to as federated learn-
ing in literature) provides a way for worldwide research
groups to collaborate and build more accurate and gen-
eralizable prediction models while providing solutions to
address data transfer or their data-sharing policies[14]. Most
of the research in decentralized machine learning algorithms
is focused on deep learning models due to their flexibility
and high performance in a wide number of domains. In
this method, all the participating sites start with the same
model, and each local model is trained on its own data. In
each iteration, gradients from local models are sent back to
the main site for aggregation, after which updated gradients
are returned to local sites to update their models. This
is repeated over many iterations until the model achieves
reaches its stopping criteria, such as the desired performance.
Sometimes, instead of averaging the gradients, the locally
trained model parameters are sent to the main site where
all the local model parameters are aggregated (known as
model averaging). The new models are then sent to the
participating sites for the next training iteration and it
continues until a desired performance is achieved. There

are several challenges in designing decentralized algorithms,
including heterogeneity across different sites, transmission,
maintaining synchronization during training iterations, and
preserving data privacy. The authors of[15], [16] provide
a detailed summary of the machine learning algorithms,
challenges, available architectures for decentralization.

III. METHODS

Decentralized learning has been applied in some domains
but, this paper, to our knowledge, presents the first approach
for decentralized brain age analysis. As stated earlier, in a
centralized approach, models are built with the data from
all the sites pooled at a central location, and therefore a
centralized model has better performance than any model
trained only on a subset of that data.

In this work, brain age prediction is done using a decen-
tralized approach where instead of transferring the original
data, only the information needed to train a model is shared,
which not only improves the prediction performance of the
model but also keeps the data secure at the local sites.
Information sent from local sites is collected at the main site
to build an aggregated model. The challenge is to reduce the
performance gap between decentralized and centralized mod-
els without sharing the original data. Such a decentralized
training approach can be used to train any prediction model;
however, the type of information transferred between local
and main sites highly depends on the type of the prediction
model used (as different machine learning algorithms have
different parameters and approaches to reach the optimal
solution).

Our decentralized algorithm is described in Alg. 1. Let us
assume there are N + 1 participating sites, each gathering
data from a different set of participants. In our initial setup,
all the local sites (sites from 1,2,..,N) are provided with the
details of the prediction model and the type of information to
be shared with the main site(site-0) after training their local
models. Of all the participating sites, N sites are used as
local sites, and the remaining site is used as the main site. In
this study, we use support vector regression (SVR)[17] as the
prediction model and apply decentralization by employing a
training strategy similar to[14], [18]. As a first step, all the
local sites train an SVR model locally with their data and
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Algorithm 1: Decentralized brainage prediction

Data: Xm×n
i ∈ R be data of m subjects, with n

features each, available at site
i ∈ {0, 1, 2, .., N}, and Ym×1

i ∈ R
representing their chronological age.

/* Local sites */

1 for all sites i in 1 .. N do
2 Construct a regression model Mi with (Xm×n

i as
features and Ym×1

i ) as age estimator
3 Send model parameters Pn×k

i to the aggregator
site

4 end
/* aggregator site */

5 if site i == 0 then
6 Gather parameters from all local sites i=1..N
7 Combine parameters

Pn×k
0 = Average(Pn×k

i ), i ∈ {1, 2, 3, .., N}
8 Transform data X0 to

Xnewm×k
0 = Xm×n

0

⊗
Pn×k
i

9 Construct a decentralized model M0 with
Xnewm×k

0 as features and Ym×1
0 ) as age

estimator
10 end

transfer the weight vectors of the locally learned models to
the main site. The main site (site-0) averages these vectors
and uses the average weight vector to transform its data into
a new feature space. This modified data is then used to train
a decentralized SVR model (see Fig. 1).

IV. RESULTS

The main emphasis of this work is to develop a decen-
tralized BAE model that has comparable performance with
its corresponding centralized model. For this purpose, we
perform multiple experiments with Freesurfer ROI features
extracted from UPENN-PNC sMRI dataset with six sites
(one as main and the remaining five as local sites) using
COINSTAC[5], [6], [19], a platform that enables decentral-
ized analysis of (neuroimaging) data without the need to pool
the data at one location. COINSTAC implements a wide and
growing range of decentralized neuroimaging pipelines and
supports such large-scale analysis of decentralized data with
results on par with results from pooled data.

The UPENN-PNC[20] data consists of sMRI of 1591
healthy subjects with chronological ages ranging from 8 to
21 years during acquisition. This data is jointly spatially nor-
malized and segmented and then smoothed by a 6-mm full-
width at half maximum (FWHM) Gaussian kernel. Segmen-
tation was performed in SPM12[21]. We use FreeSurfer[22]
(Fig. 1) to extract brain structural features from UPENN-
PNC data. A standard aseg.stats file that has features
corresponding to total Intracranial Volume (eTIV), left hemi-
sphere (lh) and right hemisphere (rh) subcortical regions is
generated. Additionally, features corresponding to cortical
thicknesses and volumes of the parcellated regions in surface
GM in both left and right hemispheres are also extracted.

In total, we use 152 features for each subject to train the
regression models.

To distribute the data across six sites, we employ three
strategies to split the data equally, with 90%-10% train-test
split at each site. In the first approach (random sampling),
data is randomly partitioned across these sites, and within
each site, the data is further randomly split into training
and testing datasets. In the second approach named as age-
stratified sampling, we use stratified sampling based on
subject age to partition the data into six sites. Within each
site, the training and testing datasets were split randomly.
In the third approach referred as age-bin-stratified sampling,
subjects are grouped into different bins based on their age
ranges, label these bins and use these labels to perform
stratified sampling. In the case of age-bin-stratified sampling,
data is grouped into 8 bins based on the age and these 8
labelled classes are used to divide the data. All experiments
were repeated five times, including splitting the data and
training models. To build a centralized model, training data
from all the sites is pooled into one training dataset, and
testing data from all the sites is combined to create the testing
dataset.

Root mean square error (RMSE) and mean absolute error
(MAE) are the metrics generally used in literature to measure
the performance of the fitted regression models. RMSE
is a standard measure used to analyze the performance
of regression models and MAE is an average measure of
the magnitude of absolute difference between the actual
and predicted values (generally used to measure brain age
gaps). Clearly, lower the values of these measures better the
prediction model. Both the metrics are computed as follows:

RMSE =

√
Σ

nsamples
i=1

(
yactual−ypredicted

)2

nsamples

MAE =
Σ

nsamples
i=1 |yactual−ypredicted|

nsamples

Fig. 2 shows the performance of the decentralized models
compared to their corresponding centralized models. Decen-
tralized models showed higher RMSE and MAE values on
the training data across all sampling strategies, whereas the
centralized models demonstrated slightly higher values on
the test data. To statistically compare the performance of
centralized and decentralized models for both measures, we
used a Wilcoxon signed-rank test[23]. This is a nonparamet-
ric pairwise comparison test, with no assumptions on the
data distribution and a null hypothesis that the differences
between two samples have a distribution centered about zero.
We compare the training and testing scores for both RMSE
and MAE for all sampling methods, and this test fails to
reject the null hypothesis in all the cases (with α = 0.05 as
shown in Fig. 3). Results thus confirm that the decentralized
models achieve performance similar to that of centralized
models.

V. CONCLUSIONS

In this work, decentralized machine learning models are
used for brain age estimation compared to existing cen-
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Fig. 2. Performance comparison of centralized and decentralized models using Freesurfer features of sMRI data with varying sampling methods. Statistical
nonparametric pairwise comparison test shows that decentralized models has performance similar to that of centralized models.

Fig. 3. Results of Wilcoxon signed-rank test for different metrics. p-values
greater than reference α = 0.05 (red line) show that they fail to reject
the null hypothesis showing that decentralized and centralized models have
similar performance for these metrics.

tralized approaches. In this approach, decentralized models
are built using the information of locally trained models at
different sites and do not involve actual data sharing. We
compare performance using features extracted from sMRI
data with three different data splitting strategies and showed
that decentralized models have similar performance to their
centralized counterparts. The key benefit of decentralization
is that it encourages collaboration by allowing different re-
search groups to readily participate in larger studies without
worrying about their data-sharing policies or data transmis-
sion.
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