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Abstract— Brain age, an estimated biological age from
anatomical and/or functional brain imaging data, and its
deviation from the chronological age (brain age gap) have
shown the potential to serve as biomarkers for characterizing
typical brain development, the abnormal aging process, and
early indicators of clinical neuropsychiatric problems. In this
study, we leverage multimodal brain imaging data for brain
age prediction. We studied and compared the performance of
individual data modalities (gray matter density in components
and regions of interest, cortical and subcortical anatomical
features, resting-state functional connectivity) and different
combinations of multiple data modalities using data collected
from 1417 participants with age between 8 and 22 years. The
result indicates that feature selection and multimodal imaging
data can improve brain age prediction with linear support
vector and partial least squares regression models. We have
achieved a mean absolute error of 1.22 years on the test data
with 188 features selected equally from all data sources, better
than any individual source. After bias correction, the brain age
gap was significantly associated with attention accuracy/speed
and motor speed in addition to age. Our results conclude that
traditional machine learning with proper feature selection can
achieve similar if not better performance compared to complex
deep learning neural network methods for the used sample size.

I. INTRODUCTION

Our brain continues to develop and change throughout
the lifespan. Neuroimaging data serve as a helpful resource
that can be used to study in vivo brain development. Brain
age has been recently proposed as one of the biological
aging indicators [1] and has been estimated from structural
and functional brain imaging data [2,3] in relation to the
chronological age of human subjects. The estimated brain
age and its divergence from the chronological age have
proved to be insightful biomarkers for characterizing typical
brain development [1,8], abnormal aging process [4], and
early clinical indicators of neuropsychiatric problems [5,9-
11].

Multiple brain age models have been published using
various features and methods for different age groups [1-4].
Such studies can be characterized as brain age estimations
using single or multimodal imaging data with predictions.
Some studies used traditional machine learning techniques
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or new neural network techniques, and some focused on
estimates for the brain developmental phase or adulthood.

In the beginning years of brain age research, most mod-
els were constructed using regression-based approaches [2-
4,6,7]. For instance, based on T1-weighted structural brain
imaging of 550 normal subjects aged 19–86, brain age was
estimated using relevant vector regression with 410 features
extracted by principal component analysis. The accuracy,
measured by mean absolute error (MAE), was initially in the
5 year range [2, 7]. Erus et al. studied 621 subjects of ages
8–22 participating in the Philadelphia Neurodevelopmental
Cohort (PNC). They applied support vector regression onto
1,116,006 features from multimodal structural imaging maps
(gray matter, white matter, ventricular, fractional anisotropy
and apparent coefficient of diffusion). They achieved the
MAE between the estimated and true age of 1.22 years
and reported whole-brain widespread contribution to brain
age estimation. These studies, along with others [2,6,7,31],
demonstrated that relatively high accuracy of brain age pre-
diction could be achieved by traditional regression methods
with a range of MAE between 1 and 5, and multimodal
imaging data can result in more accurate brain age estimates
than a single imaging modality. However, it is still unclear
how the number of features, selection of features, or feature
extraction affects brain age estimation accuracy.

Recently neural network-based approaches have been in-
creasingly applied to brain imaging data for brain age pre-
diction [8,12-20]. Cole et al. used a predictive modeling
approach based on convolutional neural networks (CNN)
on 2001 healthy adults and accurately predicted brain age
using gray matter maps (MAE = 4.16 years)[8]. Similarly,
the study by M. Ueda et al. used single modality T1 weighted
structural MRI data to train a 3D CNN for brain age
prediction. This research exhibits that 3D CNN performs
better than 2D CNN using a sample size of over 1000 T1-
weighted images, resulting in an MAE of 3.67 years [20].
Focused on PNC data, Sturmfels et al. also proposed a novel
convolutional neural network (CNN) by adding more filters
in the early stage of the architecture for more accurate age
prediction (sample size = 1445 T1 weighted structural images
and MAE=1.4 years) [19].These studies show that the new
deep learning approach can predict brain age with accuracy
in the MAE range of between 1 and 4. However, the deep
learning approach’s strength lies in learning large data, which
needs to be further tested for extensive imaging data. [23,32]

Our focus was to further explore the use of multimodal
imaging data, including both function and structure, as well
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as to evaluate the importance of feature selection for brain
age prediction and the number of features necessary for
brain age estimation in this study. We analyzed the impact
of using different combinations of imaging modalities and
their effect on the prediction model. Some studies have used
multimodal imaging for brain age prediction. However, to
our knowledge, no study has evaluated feature selection
or provided an explicit comparison between the different
combinations of multimodal data effects on brain age models.
Several studies have been conducted using PNC data to
predict brain age using either traditional regression methods
or a neural network approach. Hence, we also tested our
models on PNC data so that our results can be compared
with previous works.

II. MATERIALS AND METHODS

A. Participants and Data

A total of 1598 participants aged 8 to 22 in the
PNC recruited from the general population [28] provided
multimodal brain imaging data (dbGaP Study Accession:
phs000607.v3.p2). PNC study was approved by Institutional
Review Board of University of Pennsylvania and the Chil-
dren’s Hospital of Philadelphia. In this study, we analyzed T1
weighted structural MRI (sMRI) and resting-state functional
MRI (rs-fMRI). To focus on healthy brain development, we
excluded 181 subjects based on gray matter data quality,
clinical assessment, and structured interview information.
Our final sample consists of 1417 participants (672 male
and 745 female, age 13.95± 3.57 years old)

B. Gray matter density feature extraction

sMRI images were processed using SPM-12 to gen-
erate gray matter maps, including normalization, modu-
lated segmentation with cohort-specific TPM templates, then
smoothed by a 6 × 6× 6 mm3 Gaussian kernel. Two different
approaches were applied for extracting features from whole-
brain gray matter images.

• Independent component analysis (ICA) [30] was applied
to estimate 100 independent brain components. The se-
lected 100 ICA components explained a total of 84.76%
variance. Loadings of each component represent gray
matter network’s expression across participants.

• A region of interest (ROI) based approach using the
automatic anatomical labeling (AAL) [29] brain atlas
extracted 116 brain parcellations. The mean gray matter
density of each region was used as the ROI feature.

C. Cortical and subcortical anatomical features

To obtain the brain cortical and subcortical anatomical
features we have used the FreeSurfer [26] (version v5.3) soft-
ware on sMRI images. Estimated total Intracranial volume
(eTIV), and cortical thickness, cortical volumes, and sub-
cortical volumes of left and right hemispheres of the brain
were extracted to form 152 anatomical features.

D. rs-fMRI functional network connectivity (FNC) features

SPM 12 was used to preprocess all resting-state fMRI
scans by performing slice timing correction, realignment,
spatial normalization, smoothing steps. Individual’s data
were removed if more than 30% of frames exceeds 0.3mm
framewise displacement, resulting in 1113 subjects for fur-
ther rs-fMRI analyses. Then we applied group independent
component analysis [24] to retrieve the subject-specific brain
components. Specifically, we performed two-level PCA de-
ductions with 110 and 100 components and extracted 100
independent brain components. Spatio-temporal regression
was used as a back-reconstruction approach to retrieve the
subject-specific spatial maps and time courses. After visual
inspection, we have selected 56 components as brain func-
tional components. As for post-processing steps on each
component’s time courses, we performed detrending, despik-
ing, motion correction of 6 motion parameters, bandpass
filtering [ 0.01-0.15 Hz]. Next, we calculated the pairwise
Pearson’s correlation between time courses as FNCs. The
56 x 56 symmetric matrix was flattened, and a feature
vector of size 1540 was extracted from the lower triangle.
Next, we applied ICA to the 1113 x 1540 (number of
subjects by number of features) FNC features to extract 100
FNC components whose loadings across participants showed
individuals FNC expression.

E. Brain age prediction models

For estimation of brain age, we used participants’ chrono-
logical age as the dependent variable and features derived
from brain imaging data as independent predictors. Two
different regression models, support vector regression (SVR)
with a linear kernel and partial least squares regression,
were used in this study. These two regression models were
coupled with recursive feature elimination (RFE). RFE is a
backward feature elimination approach that assigns a rank
to each feature based on its contribution to model prediction
accuracy and then eliminates the lower rank features. We
divided the samples into 90% training data and 10% testing
data. On the training samples, we applied 10-fold cross-
validation with the RFE method using SVR estimator to
prune the unimportant features. Then the best number of
features were selected to achieve the best model parameters.
Model input data are from four feature sets to train our brain
age prediction model, including 1) Loading of 100 ICA brain
components from gray matter images. 2) Gray matter density
of 116 AAL regions from gray matter images. 3) 152 brain
anatomical features of eTIV, cortical thickness, volume, and
subcortical volume measures from sMRI and 4) Loading of
100 FNC components from rs-fMRI FNC vectors. We first
tested brain age models with four individual sets of features
separately. Then, multimodal brain age prediction was made
by various combinations of the four sets of features. The
number of subjects varies slightly in different models due
to missing data during the data acquisition and feature
extraction process.
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Fig. 1: Overview of the feature extraction and brain age prediction method

F. Training and Testing

• We initially trained two brain age prediction models:
support vector regression (linear kernel) and partial
least squares regression models, with each of the four
individual input datasets in two ways. One is that the
full feature space was used for training and testing. The
other is that the RFE pruning approach on the individual
feature space was applied during training the regression
models to reduce the number of features.

• Secondly, we combined all features from brain structure,
including 100 ICA gray matter components, 116 AAL
ROI gray matter density, and 152 brain anatomical
features( a total of 368 brain features), to train our brain
age models with and without the RFE pruning.

• Finally, we have combined brain structural and func-
tional features, including the 100 ICA components from
FNC derived using rs-fMRI modality, the 100 ICA gray
matter components, 116 AAL ROI gray matter density,
and 152 brain anatomical features. We trained brain age
models with full feature space (a total of 468 features)
and RFE pruning on feature space.

G. Bias free brain age difference

We calculated the age gap for each subject by taking
the difference between their chronological age and predicted
brain age from our best regression model. However, we
have observed a negative correlation between the calculated
age difference and the individual’s chronological age, which
indicates that our brain age model’s prediction results have
some bias due to age dependency. Hence, to achieve a more
accurate bias-free estimation from the model, we have imple-
mented the bias reduction technique proposed by Beheshti
et al. (2019)[22].

We first calculated the slope and intercept value from the
regression line of the brain age gap against each subject’s
chronological age in this approach. Then we computed an
offset value for each sample as follow:

Offset = Slope× Chronological age+ Intercept (1)

Then this offset value is subtracted from the predicted
brain age to get the bias-free brain age.

Bias free brain age = Estimated brain age−Offset
(2)

Finally, we measured the bias-free brain age gap using the
subtraction between bias-free brain age and each subject’s
real age.

H. Comparison with Cognitive domain

We have investigated whether there are any associations
between each individual’s bias-free brain age gap and their
cognitive ability. We performed the n-way analysis of co-
variance test with the bias-free age difference (continues
variable), sex, and chronological age (continuous variable)
as independent variables. Dependent variables included the
following Computerized Neurocognitive Battery (CNB)[27]
test scores: attention (ATT) speed and accuracy, Working
memory (WM) speed and accuracy, age-adjusted intelligence
quotient (IQ), sensorimotor processing speed (SM), and mo-
tor speed (MOT). Each score was tested separately. Finally,
we reported adjusted p-values (q-values) by implementing
multiple testing corrections with the false discovery rate
(FDR) method.

I. Important Brain Regions

To further improve our understanding of the brain age, we
highlighted the top 10 features selected by RFE from the final
combined datasets just for demonstration purpose. The top
10 features illustrate the brain’s top areas that are important
for brain age prediction. Then, we plotted all effective brain
regions using BrainNetViewer toolbox [25]. All steps in our
analyses are summarized in Fig. 1.
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TABLE I: Top: MAE of each model on four individual
(ICA, AAL, Anatomical and FNC) feature sets without RFE
pruning. Bottom: MAE of each model on four individual
feature sets with RFE pruning.

III. RESULTS

A. Prediction ability on individual datasets

We have initially tested our brain age model’s performance
on the four individual datasets. The brain age estimation error
was measured by the mean absolute error (MAE) for each
model. Table I lists the MAE during the training and testing
for each feature set and for each regression model. (with or
without the RFE pruning approach)

We can observe that after removing unimportant features
using the RFE technique, the prediction accuracy has slightly
increased for all four individual datasets. The 100 ICA brain
components feature from gray matter images consistently
achieved the best accuracy compared to the other three
single-source datasets. From our best-performed model SVR
(linear kernel), we got the mean MAE of 1.64 years between
predicted brain age and actual age during the training and
MAE of 1.60 years during the testing phase with selected
81 important ICA brain components after applying the RFE
pruning method.

B. Performance increased with multimodal data

The brain age prediction models were trained with mul-
timodal feature sets using different combinations of the
individual sets of features. At first, we aggregated 100 ICA
components of gray matter images, gray matter density of
116 AAL regions, and 152 anatomical features to get our
first multimodal feature set. We then have added 100 FNC

TABLE II: MAE of each regress model on two multimodal
feature sets (with or without RFE pruning).

components from resting-state fMRI FNC vector with the
first combined dataset to get our second multimodal feature
set. The RFE pruning method has selected 120 features from
the first multimodal 368 features, and 188 features from
the second multimodal 468 features. Multimodal brain age
models’ performance with and with RFE pruning was listed
in Table II.

Our prediction result indicates that multimodal data leads
to better prediction performance than the unimodal feature
sets. The brain age model obtained the best accuracy (MAE
1.17 years during training, MAE 1.22 years during the testing
phase) while trained with 188 RFE selected features from the
final multimodal dataset. RFE method selected 41 features
from 100 ICA gray matter components, 45 features from 116
AAL ROI, 55 features from 152 anatomical features, and 47
features from 100 FNC components to create the final list
of 188 useful multimodal feature sets. We can observe that
all modalities have almost equal contribution to the final 188
important multimodal feature set.

C. Gender specific model

Gender specific models were also trained with our best
performing (RFE selected 188) multimodal feature set. In
this approach a male model was trained using only male
subjects and a female model was trained with only female
subjects.The male model achieved an MAE 1.21 years during
training and MAE 1.29 years during test phase from SVR
regression model, which is comparable to the accuracy ob-
tained by all subjects together. However, prediction accuracy
from the female model was lower since it obtained MAE
1.32 years during training and MAE 1.51 years during testing
phase. The male and female models were also compared for
predicting age of the opposite sex. Figure 2 plots the actual
age against estimated brain age for each gender group. From
Figure 2 we can observe that the maturity pace was different
for male and female subjects. Also, when female subjects
were tested on the male model, the model underestimated
ages of females in late adolescence to early adulthood.

D. Bias free Brain age gap

We have used the RFE selected 188 important feature
set for computing the brain age difference. Specifically, we
retrained our brain age model with a sample size of 1048
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Fig. 2: Scatter plot of chronological age versus brain age
on sex specific training models. Blue line indicates training
samples, and orange line indicates testing samples.

subjects (subjects had all 188 features). Since we are only
using the fixed 188 important features to train our brain
age model, the freedom of parameters is also fixed during
training. Therefore, we can use more data to get more
accurate prediction without facing the overfitting issue. The
MAE between predicted and true chronological age was 0.97
years from our best-performed model SVR (linear kernel).
After that, we have followed the bias reduction technique
proposed by Beheshti et al. (2019)[21] to calculate the bias-
free age difference for all subjects.

Fig. 3: Left: Scatter plot of predicted brain age vs chrono-
logical age (before bias correction) Middle: Scatter plot of
estimated brain age difference vs chronological age(before
bias correction) Right: Scatter plot of estimated brain age
difference vs chronological age(after bias correction)

Figure 3 left plot shows the predicted brain age vs
chronological age before we implemented the bias reduc-
tion technique. From the middle plot of Figure 3 we can
observe a negative relation between brain age difference and
chronological age, showing our model overestimated brain
age for young children and underestimated brain age for
young adults. However, the right plot indicates that the bias
got adjusted after implementing the bias correction method.

E. Relationship with cognitive ability

We implemented analyses of co-variance on the seven
CNB test sores with the estimated bias-free age gap, sex, and
chronological age as independent variables. The significance
of the effect from the bias-free brain age gap to each
cognitive score was listed in Table III.

Results showed that the bias-free brain age gap signifi-
cantly affects attention accuracy and speed (ATT accuracy,
ATT speed) and motor speed (MOT) of the subjects. We
also observed a significant gender effect on the participants’

TABLE III: Significance and effect size of the bias free
age gap to seven scores in cognitive domain using analysis
of co-variance. Significant values q ≤ 0.05 after multiple
comparison correction are shown in bold.

attention speed, working memory speed, and motor speed
(results not shown here).

F. Plot of effective brain regions

For demonstration purpose we have identified the top
10 regions of the brain that are important for brain age
prediction by analyzing the contribution of RFE selected 188
multimodal features. At first, these 188 features were sorted
based on the brain age regression model’s coefficient value,
and then the top 10 (arbitrary choice) features were selected
and plotted in Figure 4. Their contribution weights and brain
regions are listed in Table IV.

Fig. 4: Top ten effective brain features for age prediction.
AAL ROIs are highlighted with different colors. ICA gray
matter components are plotted as yellow nodes at the peak
voxels. FNC features are shown as edges connecting two
yellow nodes.

In Figure 4 the AAL regions were highlighted with differ-
ent colors, the peak voxels of ICA gray matter components
and FNC features were plotted as yellow nodes (with an edge
in cases of FNC). By comparing the feature’s weight and its
brain location from Table IV, we can infer useful information
to understand brain development.

IV. DISCUSSION

Our goal in this study is to use a relatively large dataset
to investigate brain age prediction performance with single
and multiple imaging modalities. We found that SVR (linear
kernel) and PLS regression models performed similarly on
all single-source feature sets. However, the ICA gray matter
components achieved slightly better accuracy compared to
any other single-source feature sets in Table I. We also
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TABLE IV: Contribution weights and brain location of the
top ten features

observed that after pruning the unimportant features using the
RFE technique, brain age models showed a little improve-
ment in the prediction performance. The best-performed
single-source model (SVR with linear kernel) achieved a
MAE of 1.60 years on the test samples while using selected
81 useful features from ICA gray matter data.

When we compared ICA components with averaged gray
matter of the corresponding regions, the ICA approach
extracted sub-variance of each region, different from simple
average. ICA components were more relevant to the age than
the simple average of the region which is similar to the ROI-
based gray matter density features. Hence, the data-driven
variations extracted by ICA presented different and slightly
better features than ROIs in age prediction.

When we examined how the brain age models performed
if we incorporated multimodal feature sets instead of only
one single modality, our analysis results show that the
multimodal datasets led to better prediction accuracy. With
feature selection, multimodal datasets obtained significantly
improved prediction accuracy (improved from MAE 1.60
years to MAE 1.22 years). Our performed two-sample t-
test result (t-value: 2.07, p-value: 0.039) indicates that this
improved accuracy was statistically significant. The best
prediction model was using 188 RFE selected features from
the multimodal dataset including all four single modalities.
Our best model, SVR (linear kernel), obtained an MAE of
1.22 years on test samples, while it achieved an MAE of
0.97 years from the full samples. No statistical significant
differences exist among the coefficients of features of four
modalities. Hence, we can say that all unimodal datasets have
equally contributed to the final brain age model.

One of the recent studies [19] compared the brain age pre-
diction performance of their proposed convolutional neural

networks (CNN) and baseline CNN model on the same PNC
dataset (N=1445 sMRI images). Their novel CNN model
achieved an MAE of 1.4 years, while the baseline network
achieved an MAE of 1.6 years, which are comparable to our
results. We have demonstrated that using multimodal pruned
important feature sets on traditional machine learning regres-
sion methods can achieve similar or better age prediction
accuracy instead of other complex approaches like CNN.

We conducted sex-specific training and testing on the brain
age models, which show lower prediction accuracy (MAE of
1.51 years on test data) on the all-female model. However,
from the male-only model, we got an MAE of 1.29 years
during the testing phase, which is in line with the results we
got from all subject models. Furthermore, as expected, we
found the estimated maturity is different for male and female
subjects, consistent with previous work [6].

To understand the meaning of the brain age differences, we
calculated a bias-free age gap. We performed an analysis of
the covariance test using seven CNB tests as Y (the variable
to be predicted) and two continuous variables, age and bias-
free age gap, one categorical variable sex as a predictor. As
expected, we found that age significantly influenced all seven
CNB test variables, indicating cognitive maturity. Also, we
observed that sex had shown a significant effect on attention
(ATT), working memory (WM), and motor (MOT) speed
tests. More importantly, the bias-free brain age gap displayed
a significant influence on attention (both speed and accuracy)
and motor speed CNB test variables, indicating brain age gap
contributes to the individual differences in brain development
trajectory and further in the subjects’ cognitive maturity.

For illustration purposes, we have plotted the top ten brain
features related to brain age prediction. By analyzing the
model weights of these ten features, we can figure out the
effects of each specific brain location on brain age develop-
ment. For instance, the top contributor feature ROI-10 has a
negative weight (-2.471), which indicates that the gray matter
in the middle frontal gyrus will decrease along with the
growth of subjects. This may reflect the synaptic pruning
process to improve the efficiency of neural transmission.
Therefore, with simple linear models, we can explore why
a brain region is essential for brain maturity and how that
changes over our life span. Compared to the traditional
machine learning method using more complex approaches
like the deep neural network for brain age prediction, this
knowledge will be hard to capture. There have been models
that allow for interpreting feature contribution, but these are
not as straightforward as linear models.

This study supports the hypothesis of improved brain
age prediction accuracy from multimodal data. Our results
emphasize that feature selection matters when it comes to
brain age prediction accuracy, and only a small set of features
are needed. A comparatively simple conventional machine
learning approach like SVR can achieve similar or better
brain age prediction accuracy as complex approaches such
as the convolutional neural network for the used sample
size. In the future, we will add more modalities such as
genetic information to improve model accuracy and test our

3863



model with an independent dataset to validate the model’s
generalizability.
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